import torch from torch.utils.data import DataLoader from src.vocab import Vocab from src.dataset import TokenizerDataset from hint_fine_tuning import CustomBERTModel import argparse def test_model(opt): print(f"Loading Vocab {opt.vocab_path}") vocab = Vocab(opt.vocab_path) vocab.load_vocab() print(f"Vocab Size: {len(vocab.vocab)}") test_dataset = TokenizerDataset(opt.test_dataset, opt.test_label, vocab, seq_len=50) # Using sequence length 50 print(f"Creating Dataloader") test_data_loader = DataLoader(test_dataset, batch_size=32, num_workers=4) # Load the entire fine-tuned model (including both architecture and weights) print(f"Loading Model from {opt.finetuned_bert_checkpoint}") model = torch.load(opt.finetuned_bert_checkpoint, map_location="cpu") print(f"Number of Labels: {opt.num_labels}") model.eval() for batch_idx, data in enumerate(test_data_loader): inputs = data["input"].to("cpu") segment_info = data["segment_label"].to("cpu") with torch.no_grad(): logits = model(inputs, segment_info) print(f"Batch {batch_idx} logits: {logits}") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-t", "--test_dataset", type=str, default="/home/jupyter/bert/dataset/hint_based/ratio_proportion_change_3/er/er_test_dataset.csv", help="test set for evaluating fine-tuned model") parser.add_argument("-tlabel", "--test_label", type=str, default="/home/jupyter/bert/dataset/hint_based/ratio_proportion_change_3/er/test_infos_only.csv", help="label set for evaluating fine-tuned model") parser.add_argument("-c", "--finetuned_bert_checkpoint", type=str, default="/home/jupyter/bert/ratio_proportion_change3_1920/_Aug23/output/hint_classification/fine_tuned_model_2.pth", help="checkpoint of the saved fine-tuned BERT model") parser.add_argument("-v", "--vocab_path", type=str, default="/home/jupyter/bert/ratio_proportion_change3_1920/_Aug23/pretraining/vocab.txt", help="built vocab model path") parser.add_argument("-num_labels", type=int, default=2, help="Number of labels") opt = parser.parse_args() test_model(opt)