from __future__ import annotations import math import random import gradio as gr import torch from PIL import Image, ImageOps from diffusers import StableDiffusionSAGPipeline help_text = """ """ examples = [ [ ' ', 50, "Fix Seed", 35934, 3.0, 1.0, ], [ '.', 50, "Fix Seed", 24865, 3.0, 1.0, ], [ 'A poster', 50, "Fix Seed", 37956, 3.0, 1.0, ], [ 'A high-quality living room', 50, "Fix Seed", 78710, 3.0, 1.0, ], [ 'A Scottish Fold playing with a ball', 50, "Fix Seed", 11511, 3.0, 1.0, ], ] model_id = "runwayml/stable-diffusion-v1-5" def main(): pipe = StableDiffusionSAGPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to('cuda') def generate( prompt: str, steps: int, randomize_seed: bool, seed: int, cfg_scale: float, sag_scale: float, ): seed = random.randint(0, 100000) if randomize_seed else seed generator = torch.manual_seed(seed) ori_image = pipe(prompt, generator=generator, num_inference_steps=steps, guidance_scale=cfg_scale, sag_scale=0.0).images[0] generator = torch.manual_seed(seed) sag_image = pipe(prompt, generator=generator, num_inference_steps=steps, guidance_scale=cfg_scale, sag_scale=sag_scale).images[0] return [ori_image, sag_image, seed] def reset(): return [0, "Randomize Seed", 90061, 3.0, 0.75, None, None] with gr.Blocks() as demo: gr.HTML("""
Condition-Agnostic Diffusion Guidance Using the Internal Self-Attention.
""") with gr.Row(): with gr.Column(scale=5): prompt = gr.Textbox(lines=1, label="Enter your prompt", interactive=True) with gr.Column(scale=1, min_width=60): generate_button = gr.Button("Generate") with gr.Column(scale=1, min_width=60): reset_button = gr.Button("Reset") with gr.Row(): steps = gr.Number(value=50, precision=0, label="Steps", interactive=True) randomize_seed = gr.Radio( ["Fix Seed", "Randomize Seed"], label="Seed Type", value="Fix Seed", type="index", show_label=False, interactive=True, ) seed = gr.Number(value=90061, precision=0, label="Seed", interactive=True) with gr.Row(): cfg_scale = gr.Slider( label="Text Guidance Scale", minimum=0, maximum=10, value=3.0, step=0.1 ) sag_scale = gr.Slider( label="Self-Attention Guidance Scale", minimum=0, maximum=1.0, value=0.75, step=0.05 ) with gr.Row(): ori_image = gr.Image(label="CFG", type="pil", interactive=False) sag_image = gr.Image(label="SAG + CFG", type="pil", interactive=False) ori_image.style(height=512, width=512) sag_image.style(height=512, width=512) ex = gr.Examples( examples=examples, fn=generate, inputs=[ prompt, steps, randomize_seed, seed, cfg_scale, sag_scale, ], outputs=[ori_image, sag_image, seed], cache_examples=False, ) gr.Markdown(help_text) generate_button.click( fn=generate, inputs=[ prompt, steps, randomize_seed, seed, cfg_scale, sag_scale, ], outputs=[ori_image, sag_image, seed], ) reset_button.click( fn=reset, inputs=[], outputs=[steps, randomize_seed, seed, cfg_scale, sag_scale, ori_image, sag_image], ) demo.queue(concurrency_count=1) demo.launch(share=False) if __name__ == "__main__": main()