suvrobaner's picture
created app.py
6ed0b16
raw
history blame
458 Bytes
pipe = pipeline(model = "suvrobaner/whisper-small-finetuned-hi-commonvoice")
def transcribe(audio):
text = pipe(audio)["text"]
return text
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs="text",
title="Whisper Small Hindi Transcribe",
description="Realtime demo for Hindi speech recognition using a fine-tuned Whisper small model on Common Voice dataset.",
)
iface.launch()