File size: 2,053 Bytes
9390e2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch
import torch.nn as nn


class AddCoordsTh(nn.Module):
    def __init__(self, x_dim=64, y_dim=64, with_r=False):
        super(AddCoordsTh, self).__init__()
        self.x_dim = x_dim
        self.y_dim = y_dim
        self.with_r = with_r

        xx_channel, yy_channel = self._prepare_coords()
        self.xx_channel = nn.parameter.Parameter(xx_channel, requires_grad=False)
        self.yy_channel = nn.parameter.Parameter(yy_channel, requires_grad=False)

    def _prepare_coords(self):
        xx_ones = torch.ones([1, self.y_dim], dtype=torch.int32)
        xx_ones = xx_ones.unsqueeze(-1)

        xx_range = torch.arange(self.x_dim, dtype=torch.int32).unsqueeze(0)
        xx_range = xx_range.unsqueeze(1)

        xx_channel = torch.matmul(xx_ones, xx_range)
        xx_channel = xx_channel.unsqueeze(-1)

        yy_ones = torch.ones([1, self.x_dim], dtype=torch.int32)
        yy_ones = yy_ones.unsqueeze(1)

        yy_range = torch.arange(self.y_dim, dtype=torch.int32).unsqueeze(0)
        yy_range = yy_range.unsqueeze(-1)

        yy_channel = torch.matmul(yy_range, yy_ones)
        yy_channel = yy_channel.unsqueeze(-1)

        xx_channel = xx_channel.permute(0, 3, 2, 1)
        yy_channel = yy_channel.permute(0, 3, 2, 1)

        xx_channel = xx_channel.float() / (self.x_dim - 1)
        yy_channel = yy_channel.float() / (self.y_dim - 1)

        xx_channel = xx_channel * 2 - 1
        yy_channel = yy_channel * 2 - 1
        return xx_channel, yy_channel

    def forward(self, input_tensor):
        """
        input_tensor: (batch, c, x_dim, y_dim)
        """
        batch_size_tensor = input_tensor.shape[0]
        xx_channel = self.xx_channel.repeat(batch_size_tensor, 1, 1, 1)
        yy_channel = self.yy_channel.repeat(batch_size_tensor, 1, 1, 1)
        ret = torch.cat([input_tensor, xx_channel, yy_channel], dim=1)

        if self.with_r:
            rr = torch.sqrt(torch.pow(xx_channel - 0.5, 2) + torch.pow(yy_channel - 0.5, 2))
            ret = torch.cat([ret, rr], dim=1)

        return ret