Moore-AnimateAnyone / select_image_app.py
svjack's picture
Create select_image_app.py
4c91eed verified
raw
history blame
12.4 kB
import os
import random
from datetime import datetime
import gradio as gr
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from einops import repeat
from huggingface_hub import hf_hub_download, snapshot_download
from omegaconf import OmegaConf
from PIL import Image
from torchvision import transforms
from transformers import CLIPVisionModelWithProjection
from src.models.pose_guider import PoseGuider
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d import UNet3DConditionModel
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
from src.utils.download_models import prepare_base_model, prepare_image_encoder
from src.utils.util import get_fps, read_frames, save_videos_grid
# Partial download
prepare_base_model()
prepare_image_encoder()
snapshot_download(
repo_id="stabilityai/sd-vae-ft-mse", local_dir="./pretrained_weights/sd-vae-ft-mse"
)
snapshot_download(
repo_id="patrolli/AnimateAnyone",
local_dir="./pretrained_weights",
)
class AnimateController:
def __init__(
self,
config_path="./configs/prompts/animation.yaml",
weight_dtype=torch.float16,
):
# Read pretrained weights path from config
self.config = OmegaConf.load(config_path)
self.pipeline = None
self.weight_dtype = weight_dtype
def animate(
self,
ref_image,
pose_video_path,
width=512,
height=768,
length=24,
num_inference_steps=25,
cfg=3.5,
seed=123,
):
generator = torch.manual_seed(seed)
if isinstance(ref_image, np.ndarray):
ref_image = Image.fromarray(ref_image)
if self.pipeline is None:
vae = AutoencoderKL.from_pretrained(
self.config.pretrained_vae_path,
).to("cuda", dtype=self.weight_dtype)
reference_unet = UNet2DConditionModel.from_pretrained(
self.config.pretrained_base_model_path,
subfolder="unet",
).to(dtype=self.weight_dtype, device="cuda")
inference_config_path = self.config.inference_config
infer_config = OmegaConf.load(inference_config_path)
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
self.config.pretrained_base_model_path,
self.config.motion_module_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(dtype=self.weight_dtype, device="cuda")
pose_guider = PoseGuider(320, block_out_channels=(16, 32, 96, 256)).to(
dtype=self.weight_dtype, device="cuda"
)
image_enc = CLIPVisionModelWithProjection.from_pretrained(
self.config.image_encoder_path
).to(dtype=self.weight_dtype, device="cuda")
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
# load pretrained weights
denoising_unet.load_state_dict(
torch.load(self.config.denoising_unet_path, map_location="cpu"),
strict=False,
)
reference_unet.load_state_dict(
torch.load(self.config.reference_unet_path, map_location="cpu"),
)
pose_guider.load_state_dict(
torch.load(self.config.pose_guider_path, map_location="cpu"),
)
pipe = Pose2VideoPipeline(
vae=vae,
image_encoder=image_enc,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
pose_guider=pose_guider,
scheduler=scheduler,
)
pipe = pipe.to("cuda", dtype=self.weight_dtype)
self.pipeline = pipe
pose_images = read_frames(pose_video_path)
src_fps = get_fps(pose_video_path)
pose_list = []
total_length = min(length, len(pose_images))
for pose_image_pil in pose_images[:total_length]:
pose_list.append(pose_image_pil)
video = self.pipeline(
ref_image,
pose_list,
width=width,
height=height,
video_length=total_length,
num_inference_steps=num_inference_steps,
guidance_scale=cfg,
generator=generator,
).videos
new_h, new_w = video.shape[-2:]
pose_transform = transforms.Compose(
[transforms.Resize((new_h, new_w)), transforms.ToTensor()]
)
pose_tensor_list = []
for pose_image_pil in pose_images[:total_length]:
pose_tensor_list.append(pose_transform(pose_image_pil))
ref_image_tensor = pose_transform(ref_image) # (c, h, w)
ref_image_tensor = ref_image_tensor.unsqueeze(1).unsqueeze(0) # (1, c, 1, h, w)
ref_image_tensor = repeat(
ref_image_tensor, "b c f h w -> b c (repeat f) h w", repeat=total_length
)
pose_tensor = torch.stack(pose_tensor_list, dim=0) # (f, c, h, w)
pose_tensor = pose_tensor.transpose(0, 1)
pose_tensor = pose_tensor.unsqueeze(0)
video = torch.cat([ref_image_tensor, pose_tensor, video], dim=0)
save_dir = f"./output/gradio"
if not os.path.exists(save_dir):
os.makedirs(save_dir, exist_ok=True)
date_str = datetime.now().strftime("%Y%m%d")
time_str = datetime.now().strftime("%H%M")
out_path = os.path.join(save_dir, f"{date_str}T{time_str}.mp4")
save_videos_grid(
video,
out_path,
n_rows=3,
fps=src_fps,
)
torch.cuda.empty_cache()
return out_path
controller = AnimateController()
def ui():
from datasets import load_dataset
import io
from PIL import Image
# Load dataset and filter images
image_ds = load_dataset("svjack/Genshin-Impact-Item-Image")
image_df = image_ds["train"].to_pandas()
image_df = image_df[
image_df["tag"].map(
lambda x: "肖像" in x and "角色" in x
)
]
def bytes_to_pil_image(byte_data):
"""
Convert a byte array to a PIL Image.
:param byte_data: A byte array containing image data.
:return: A PIL Image object.
"""
# Create a BytesIO object from the byte data
image_stream = io.BytesIO(byte_data)
# Open the image using PIL
pil_image = Image.open(image_stream)
return pil_image
image_df["image"] = image_df["image"].map(lambda x: bytes_to_pil_image(x["bytes"]))
with gr.Blocks() as demo:
gr.HTML(
"""
<h1 style="color:#dc5b1c;text-align:center">
Moore-AnimateAnyone Gradio Demo
</h1>
<div style="text-align:center">
<div style="display: inline-block; text-align: left;">
<p> This is a quick preview demo of Moore-AnimateAnyone. We appreciate the assistance provided by the HuggingFace team in setting up this demo. </p>
<p> If you like this project, please consider giving a star on <a herf="https://github.com/MooreThreads/Moore-AnimateAnyone"> our GitHub repo </a> 🤗. </p>
</div>
</div>
"""
)
# Add Gallery for selecting images
with gr.Row():
gallery = gr.Gallery(
image_df["image"].tolist(),
label="Select Reference Image",
show_label=True,
elem_id="gallery",
columns=[2, 3, 4, 5, 6, 6], # Number of columns for different screen sizes
rows=[2, 2, 2, 2, 2, 2], # Number of rows for different screen sizes
height="400px", # Height of the gallery
object_fit="contain", # How images should be fit in the grid
)
with gr.Row():
reference_image = gr.Image(label="Reference Image")
motion_sequence = gr.Video(
format="mp4", label="Motion Sequence", height=512
)
with gr.Column():
width_slider = gr.Slider(
label="Width", minimum=448, maximum=768, value=512, step=64
)
height_slider = gr.Slider(
label="Height", minimum=512, maximum=960, value=768, step=64
)
length_slider = gr.Slider(
label="Video Length", minimum=24, maximum=128, value=72, step=24
)
with gr.Row():
seed_textbox = gr.Textbox(label="Seed", value=-1)
seed_button = gr.Button(
value="\U0001F3B2", elem_classes="toolbutton"
)
seed_button.click(
fn=lambda: gr.Textbox.update(value=random.randint(1, 1e8)),
inputs=[],
outputs=[seed_textbox],
)
with gr.Row():
sampling_steps = gr.Slider(
label="Sampling steps",
value=15,
info="default: 15",
step=5,
maximum=20,
minimum=10,
)
guidance_scale = gr.Slider(
label="Guidance scale",
value=3.5,
info="default: 3.5",
step=0.5,
maximum=6.5,
minimum=2.0,
)
submit = gr.Button("Animate")
# Populate gallery with images from the dataset
# gallery.update(value=image_df["image"].tolist())
with gr.Row():
animation = gr.Video(
format="mp4",
label="Animation Results",
height=448,
autoplay=True,
)
def read_video(video):
return video
def read_image(image):
return Image.fromarray(image)
def select_image(selection: gr.SelectData):
print(selection.value['image'])
return selection.value['image']["path"]
# when user uploads a new video
motion_sequence.upload(
read_video, motion_sequence, motion_sequence, queue=False
)
# when `first_frame` is updated
reference_image.upload(
read_image, reference_image, reference_image, queue=False
)
# when the `submit` button is clicked
submit.click(
controller.animate,
[
reference_image,
motion_sequence,
width_slider,
height_slider,
length_slider,
sampling_steps,
guidance_scale,
seed_textbox,
],
animation,
)
gallery.select(fn=select_image, inputs=None, outputs=[reference_image])
# Examples
gr.Markdown("## Examples")
gr.Examples(
examples=[
[
"./configs/inference/ref_images/anyone-5.png",
"./configs/inference/pose_videos/anyone-video-2_kps.mp4",
512,
768,
72,
],
[
"./configs/inference/ref_images/anyone-10.png",
"./configs/inference/pose_videos/anyone-video-1_kps.mp4",
512,
768,
72,
],
[
"./configs/inference/ref_images/anyone-2.png",
"./configs/inference/pose_videos/anyone-video-5_kps.mp4",
512,
768,
72,
],
],
inputs=[reference_image, motion_sequence, width_slider, height_slider, length_slider],
outputs=animation,
)
return demo
demo = ui()
demo.queue(max_size=10)
demo.launch(share=True, show_api=False)