File size: 3,043 Bytes
f1df74a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import torch
import numpy as np


class AbstractDistribution:
    def sample(self):
        raise NotImplementedError()

    def mode(self):
        raise NotImplementedError()


class DiracDistribution(AbstractDistribution):
    def __init__(self, value):
        self.value = value

    def sample(self):
        return self.value

    def mode(self):
        return self.value


class DiagonalGaussianDistribution(object):
    def __init__(self, parameters, deterministic=False):
        self.parameters = parameters
        self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
        self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
        self.deterministic = deterministic
        self.std = torch.exp(0.5 * self.logvar)
        self.var = torch.exp(self.logvar)
        if self.deterministic:
            self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)

    def sample(self, noise=None):
        if noise is None:
            noise = torch.randn(self.mean.shape)
        
        x = self.mean + self.std * noise.to(device=self.parameters.device)
        return x

    def kl(self, other=None):
        if self.deterministic:
            return torch.Tensor([0.])
        else:
            if other is None:
                return 0.5 * torch.sum(torch.pow(self.mean, 2)
                                       + self.var - 1.0 - self.logvar,
                                       dim=[1, 2, 3])
            else:
                return 0.5 * torch.sum(
                    torch.pow(self.mean - other.mean, 2) / other.var
                    + self.var / other.var - 1.0 - self.logvar + other.logvar,
                    dim=[1, 2, 3])

    def nll(self, sample, dims=[1,2,3]):
        if self.deterministic:
            return torch.Tensor([0.])
        logtwopi = np.log(2.0 * np.pi)
        return 0.5 * torch.sum(
            logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
            dim=dims)

    def mode(self):
        return self.mean


def normal_kl(mean1, logvar1, mean2, logvar2):
    """
    source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
    Compute the KL divergence between two gaussians.
    Shapes are automatically broadcasted, so batches can be compared to
    scalars, among other use cases.
    """
    tensor = None
    for obj in (mean1, logvar1, mean2, logvar2):
        if isinstance(obj, torch.Tensor):
            tensor = obj
            break
    assert tensor is not None, "at least one argument must be a Tensor"

    # Force variances to be Tensors. Broadcasting helps convert scalars to
    # Tensors, but it does not work for torch.exp().
    logvar1, logvar2 = [
        x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
        for x in (logvar1, logvar2)
    ]

    return 0.5 * (
        -1.0
        + logvar2
        - logvar1
        + torch.exp(logvar1 - logvar2)
        + ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
    )