Spaces:
Runtime error
Runtime error
File size: 15,542 Bytes
f1df74a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
import argparse
import datetime
import glob
import json
import math
import os
import sys
import time
from collections import OrderedDict
import cv2
import numpy as np
import torch
import torchvision
## note: decord should be imported after torch
from omegaconf import OmegaConf
from pytorch_lightning import seed_everything
from tqdm import tqdm
sys.path.insert(1, os.path.join(sys.path[0], '..', '..'))
from lvdm.models.samplers.ddim import DDIMSampler
from main.evaluation.motionctrl_prompts_camerapose_trajs import (
both_prompt_camerapose_traj, cmcm_prompt_camerapose, omom_prompt_traj)
from utils.utils import instantiate_from_config
DEFAULT_NEGATIVE_PROMPT = 'blur, haze, deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, '\
'sketch, cartoon, drawing, anime, mutated hands and fingers, deformed, distorted, '\
'disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, '\
'floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation'
post_prompt = 'Ultra-detail, masterpiece, best quality, cinematic lighting, 8k uhd, dslr, soft lighting, film grain, Fujifilm XT3'
def load_model_checkpoint(model, ckpt, adapter_ckpt=None):
if adapter_ckpt:
## main model
state_dict = torch.load(ckpt, map_location="cpu")
if "state_dict" in list(state_dict.keys()):
state_dict = state_dict["state_dict"]
result = model.load_state_dict(state_dict, strict=False)
else:
# deepspeed
new_pl_sd = OrderedDict()
for key in state_dict['module'].keys():
new_pl_sd[key[16:]]=state_dict['module'][key]
result = model.load_state_dict(new_pl_sd, strict=False)
print(result)
print('>>> model checkpoint loaded.')
## adapter
state_dict = torch.load(adapter_ckpt, map_location="cpu")
if "state_dict" in list(state_dict.keys()):
state_dict = state_dict["state_dict"]
model.adapter.load_state_dict(state_dict, strict=True)
print('>>> adapter checkpoint loaded.')
else:
state_dict = torch.load(ckpt, map_location="cpu")
if "state_dict" in list(state_dict.keys()):
state_dict = state_dict["state_dict"]
model.load_state_dict(state_dict, strict=False)
else:
# deepspeed
new_pl_sd = OrderedDict()
for key in state_dict['module'].keys():
new_pl_sd[key[16:]]=state_dict['module'][key]
model.load_state_dict(new_pl_sd)
print('>>> model checkpoint loaded.')
return model
def load_trajs(cond_dir, trajs):
traj_files = [f'{cond_dir}/trajectories/{traj}.npy' for traj in trajs]
data_list = []
traj_name = []
for idx in range(len(traj_files)):
traj_name.append(traj_files[idx].split('/')[-1].split('.')[0])
data_list.append(torch.tensor(np.load(traj_files[idx])).permute(3, 0, 1, 2).float()) # [t,h,w,c] -> [c,t,h,w]
return data_list, traj_name
def load_camera_pose(cond_dir, camera_poses):
pose_file = [f'{cond_dir}/camera_poses/{pose}.json' for pose in camera_poses]
pose_sample_num = len(pose_file)
data_list = []
pose_name = []
for idx in range(pose_sample_num):
cur_pose_name = camera_poses[idx].replace('test_camera_', '')
pose_name.append(cur_pose_name)
with open(pose_file[idx], 'r') as f:
pose = json.load(f)
pose = np.array(pose) # [t, 12]
pose = torch.tensor(pose).float() # [t, 12]
data_list.append(pose)
return data_list, pose_name
def save_results(samples, filename, savedir, fps=10):
## save prompt
## save video
videos = [samples]
savedirs = [savedir]
for idx, video in enumerate(videos):
if video is None:
continue
# b,c,t,h,w
video = video.detach().cpu()
video = torch.clamp(video.float(), -1., 1.)
n = video.shape[0]
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n)) for framesheet in video] #[3, 1*h, n*w]
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
grid = (grid + 1.0) / 2.0
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
path = os.path.join(savedirs[idx], "%s.mp4"%filename)
torchvision.io.write_video(path, grid, fps=fps, video_codec='h264', options={'crf': '10'})
def motionctrl_sample(
model,
prompts,
noise_shape,
camera_poses=None,
trajs=None,
n_samples=1,
unconditional_guidance_scale=1.0,
unconditional_guidance_scale_temporal=None,
ddim_steps=50,
ddim_eta=1.,
**kwargs):
ddim_sampler = DDIMSampler(model)
batch_size = noise_shape[0]
## get condition embeddings (support single prompt only)
if isinstance(prompts, str):
prompts = [prompts]
for i in range(len(prompts)):
prompts[i] = f'{prompts[i]}, {post_prompt}'
cond = model.get_learned_conditioning(prompts)
if camera_poses is not None:
RT = camera_poses[..., None]
else:
RT = None
if trajs is not None:
traj_features = model.get_traj_features(trajs)
else:
traj_features = None
if unconditional_guidance_scale != 1.0:
# prompts = batch_size * [""]
prompts = batch_size * [DEFAULT_NEGATIVE_PROMPT]
uc = model.get_learned_conditioning(prompts)
if traj_features is not None:
un_motion = model.get_traj_features(torch.zeros_like(trajs))
else:
un_motion = None
uc = {"features_adapter": un_motion, "uc": uc}
else:
uc = None
batch_variants = []
for _ in range(n_samples):
if ddim_sampler is not None:
samples, _ = ddim_sampler.sample(S=ddim_steps,
conditioning=cond,
batch_size=noise_shape[0],
shape=noise_shape[1:],
verbose=False,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=uc,
eta=ddim_eta,
temporal_length=noise_shape[2],
conditional_guidance_scale_temporal=unconditional_guidance_scale_temporal,
features_adapter=traj_features,
pose_emb=RT,
**kwargs
)
## reconstruct from latent to pixel space
batch_images = model.decode_first_stage(samples)
batch_variants.append(batch_images)
## variants, batch, c, t, h, w
batch_variants = torch.stack(batch_variants)
return batch_variants.permute(1, 0, 2, 3, 4, 5)
def run_inference(args, gpu_num, gpu_no):
## model config
config = OmegaConf.load(args.base)
model_config = config.pop("model", OmegaConf.create())
model = instantiate_from_config(model_config)
model = model.cuda(gpu_no)
assert os.path.exists(args.ckpt_path), f"Error: checkpoint {args.ckpt_path} Not Found!"
print(f"Loading checkpoint from {args.ckpt_path}")
model = load_model_checkpoint(model, args.ckpt_path, args.adapter_ckpt)
model.eval()
## run over data
assert (args.height % 16 == 0) and (args.width % 16 == 0), "Error: image size [h,w] should be multiples of 16!"
## latent noise shape
h, w = args.height // 8, args.width // 8
channels = model.channels
frames = model.temporal_length
noise_shape = [args.bs, channels, frames, h, w]
savedir = os.path.join(args.savedir, "samples")
os.makedirs(savedir, exist_ok=True)
if args.condtype == 'camera_motion':
prompt_list = cmcm_prompt_camerapose['prompts']
camera_pose_list, pose_name = load_camera_pose(args.cond_dir, cmcm_prompt_camerapose['camera_poses'])
traj_list = None
save_name_list = []
for i in range(len(pose_name)):
save_name_list.append(f"{pose_name[i]}__{prompt_list[i].replace(' ', '_').replace(',', '')}")
elif args.condtype == 'object_motion':
prompt_list = omom_prompt_traj['prompts']
traj_list, traj_name = load_trajs(args.cond_dir, omom_prompt_traj['trajs'])
camera_pose_list = None
save_name_list = []
for i in range(len(traj_name)):
save_name_list.append(f"{traj_name[i]}__{prompt_list[i].replace(' ', '_').replace(',', '')}")
elif args.condtype == 'both':
prompt_list = both_prompt_camerapose_traj['prompts']
camera_pose_list, pose_name = load_camera_pose(args.cond_dir, both_prompt_camerapose_traj['camera_poses'])
traj_list, traj_name = load_trajs(args.cond_dir, both_prompt_camerapose_traj['trajs'])
save_name_list = []
for i in range(len(pose_name)):
save_name_list.append(f"{pose_name[i]}__{traj_name[i]}__{prompt_list[i].replace(' ', '_').replace(',', '')}")
num_samples = len(prompt_list)
samples_split = num_samples // gpu_num
print('Prompts testing [rank:%d] %d/%d samples loaded.'%(gpu_no, samples_split, num_samples))
#indices = random.choices(list(range(0, num_samples)), k=samples_per_device)
indices = list(range(samples_split*gpu_no, samples_split*(gpu_no+1)))
prompt_list_rank = [prompt_list[i] for i in indices]
camera_pose_list_rank = None if camera_pose_list is None else [camera_pose_list[i] for i in indices]
traj_list_rank = None if traj_list is None else [traj_list[i] for i in indices]
save_name_list_rank = [save_name_list[i] for i in indices]
start = time.time()
for idx, indice in tqdm(enumerate(range(0, len(prompt_list_rank), args.bs)), desc='Sample Batch'):
prompts = prompt_list_rank[indice:indice+args.bs]
camera_poses = None if camera_pose_list_rank is None else camera_pose_list_rank[indice:indice+args.bs]
trajs = None if traj_list_rank is None else traj_list_rank[indice:indice+args.bs]
save_name = save_name_list_rank[indice:indice+args.bs]
print(f'Processing {save_name}')
if camera_poses is not None:
camera_poses = torch.stack(camera_poses, dim=0).to("cuda")
if trajs is not None:
trajs = torch.stack(trajs, dim=0).to("cuda")
batch_samples = motionctrl_sample(
model,
prompts,
noise_shape,
camera_poses=camera_poses,
trajs=trajs,
n_samples=args.n_samples,
unconditional_guidance_scale=args.unconditional_guidance_scale,
unconditional_guidance_scale_temporal=args.unconditional_guidance_scale_temporal,
ddim_steps=args.ddim_steps,
ddim_eta=args.ddim_eta,
cond_T = args.cond_T,
)
## save each example individually
for nn, samples in enumerate(batch_samples):
## samples : [n_samples,c,t,h,w]
prompt = prompts[nn]
name = save_name[nn]
if len(name) > 90:
name = name[:90]
filename = f'{name}_{idx*args.bs+nn:04d}_randk{gpu_no}'
save_results(samples, filename, savedir, fps=10)
if args.save_imgs:
parts = save_name[nn].split('__')
if len(parts) == 2:
cond_name = parts[0]
prname = prompts[nn].replace(' ', '_').replace(',', '')
cur_outdir = os.path.join(savedir, cond_name, prname)
elif len(parts) == 3:
poname, trajname, _ = save_name[nn].split('__')
prname = prompts[nn].replace(' ', '_').replace(',', '')
cur_outdir = os.path.join(savedir, poname, trajname, prname)
else:
raise NotImplementedError
os.makedirs(cur_outdir, exist_ok=True)
save_images(samples, cur_outdir)
if nn % 100 == 0:
print(f'Finish {nn}/{len(batch_samples)}')
print(f"Saved in {args.savedir}. Time used: {(time.time() - start):.2f} seconds")
def save_images(samples, savedir):
## samples : [n_samples,c,t,h,w]
n_samples, c, t, h, w = samples.shape
samples = torch.clamp(samples, -1.0, 1.0)
samples = (samples + 1.0) / 2.0
samples = (samples * 255).detach().cpu().numpy().astype(np.uint8)
for i in range(n_samples):
cur_outdir = os.path.join(savedir, f'{i}/images')
os.makedirs(cur_outdir, exist_ok=True)
for j in range(t):
img = samples[i,:,j,:,:]
img = np.transpose(img, (1,2,0))
img = img[:,:,::-1] # BGR to RGB
path = os.path.join(cur_outdir, f'{j:04d}.png')
cv2.imwrite(path, img)
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--savedir", type=str, default=None, help="results saving path")
parser.add_argument("--ckpt_path", type=str, default=None, help="checkpoint path")
parser.add_argument("--adapter_ckpt", type=str, default=None, help="adapter checkpoint path")
parser.add_argument("--base", type=str, help="config (yaml) path")
parser.add_argument("--condtype", default='frame', type=str, help="conditon type: {frame, depth, adapter}")
parser.add_argument("--prompt_dir", type=str, default=None, help="a data dir containing videos and prompts")
parser.add_argument("--n_samples", type=int, default=1, help="num of samples per prompt",)
parser.add_argument("--ddim_steps", type=int, default=50, help="steps of ddim if positive, otherwise use DDPM",)
parser.add_argument("--ddim_eta", type=float, default=1.0, help="eta for ddim sampling (0.0 yields deterministic sampling)",)
parser.add_argument("--bs", type=int, default=1, help="batch size for inference")
parser.add_argument("--height", type=int, default=512, help="image height, in pixel space")
parser.add_argument("--width", type=int, default=512, help="image width, in pixel space")
parser.add_argument("--unconditional_guidance_scale", type=float, default=1.0, help="prompt classifier-free guidance")
parser.add_argument("--unconditional_guidance_scale_temporal", type=float, default=None, help="temporal consistency guidance")
parser.add_argument("--seed", type=int, default=20230211, help="seed for seed_everything")
parser.add_argument("--cond_T", default=800, type=int, help="Steps smaller than cond_T will not contain condition")
parser.add_argument("--save_imgs", action='store_true', help="save condition")
parser.add_argument("--cond_dir", type=str, default=None, help="condition dir")
return parser
if __name__ == '__main__':
now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
print("@CoLVDM cond-Inference: %s"%now)
parser = get_parser()
args, unkown = parser.parse_known_args()
# args = parser.parse_args()
seed_everything(args.seed)
rank, gpu_num = 0, 1
run_inference(args, gpu_num, rank) |