Spaces:
Runtime error
Runtime error
""" | |
wild mixture of | |
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py | |
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py | |
https://github.com/CompVis/taming-transformers | |
-- merci | |
""" | |
import logging | |
import os | |
import random | |
from contextlib import contextmanager | |
from functools import partial | |
import numpy as np | |
from einops import rearrange, repeat | |
from tqdm import tqdm | |
mainlogger = logging.getLogger('mainlogger') | |
import pytorch_lightning as pl | |
import torch | |
import torch.nn as nn | |
from pytorch_lightning.utilities import rank_zero_only | |
from torch.optim.lr_scheduler import CosineAnnealingLR, LambdaLR | |
from torchvision.utils import make_grid | |
from lvdm.basics import disabled_train | |
from lvdm.common import default, exists, extract_into_tensor, noise_like | |
from lvdm.distributions import DiagonalGaussianDistribution, normal_kl | |
from lvdm.ema import LitEma | |
from lvdm.models.samplers.ddim import DDIMSampler | |
from lvdm.models.utils_diffusion import make_beta_schedule | |
from utils.utils import instantiate_from_config | |
__conditioning_keys__ = {'concat': 'c_concat', | |
'crossattn': 'c_crossattn', | |
'adm': 'y'} | |
class DDPM(pl.LightningModule): | |
# classic DDPM with Gaussian diffusion, in image space | |
def __init__(self, | |
unet_config, | |
timesteps=1000, | |
beta_schedule="linear", | |
loss_type="l2", | |
ckpt_path=None, | |
ignore_keys=[], | |
load_only_unet=False, | |
monitor=None, | |
use_ema=True, | |
first_stage_key="image", | |
image_size=256, | |
channels=3, | |
log_every_t=100, | |
clip_denoised=True, | |
linear_start=1e-4, | |
linear_end=2e-2, | |
cosine_s=8e-3, | |
given_betas=None, | |
original_elbo_weight=0., | |
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta | |
l_simple_weight=1., | |
conditioning_key=None, | |
parameterization="eps", # all assuming fixed variance schedules | |
scheduler_config=None, | |
use_positional_encodings=False, | |
learn_logvar=False, | |
logvar_init=0., | |
): | |
super().__init__() | |
assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"' | |
self.parameterization = parameterization | |
mainlogger.info(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode") | |
self.cond_stage_model = None | |
self.clip_denoised = clip_denoised | |
self.log_every_t = log_every_t | |
self.first_stage_key = first_stage_key | |
self.channels = channels | |
self.temporal_length = unet_config.params.temporal_length | |
self.image_size = image_size # try conv? | |
if isinstance(self.image_size, int): | |
self.image_size = [self.image_size, self.image_size] | |
self.use_positional_encodings = use_positional_encodings | |
self.model = DiffusionWrapper(unet_config, conditioning_key) | |
#count_params(self.model, verbose=True) | |
self.use_ema = use_ema | |
if self.use_ema: | |
self.model_ema = LitEma(self.model) | |
mainlogger.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") | |
self.use_scheduler = scheduler_config is not None | |
if self.use_scheduler: | |
self.scheduler_config = scheduler_config | |
self.v_posterior = v_posterior | |
self.original_elbo_weight = original_elbo_weight | |
self.l_simple_weight = l_simple_weight | |
if monitor is not None: | |
self.monitor = monitor | |
if ckpt_path is not None: | |
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet) | |
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps, | |
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) | |
self.loss_type = loss_type | |
self.learn_logvar = learn_logvar | |
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) | |
if self.learn_logvar: | |
self.logvar = nn.Parameter(self.logvar, requires_grad=True) | |
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, | |
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): | |
if exists(given_betas): | |
betas = given_betas | |
else: | |
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, | |
cosine_s=cosine_s) | |
alphas = 1. - betas | |
alphas_cumprod = np.cumprod(alphas, axis=0) | |
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) | |
timesteps, = betas.shape | |
self.num_timesteps = int(timesteps) | |
self.linear_start = linear_start | |
self.linear_end = linear_end | |
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' | |
to_torch = partial(torch.tensor, dtype=torch.float32) | |
self.register_buffer('betas', to_torch(betas)) | |
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) | |
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) | |
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) | |
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) | |
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) | |
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) | |
# calculations for posterior q(x_{t-1} | x_t, x_0) | |
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / ( | |
1. - alphas_cumprod) + self.v_posterior * betas | |
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) | |
self.register_buffer('posterior_variance', to_torch(posterior_variance)) | |
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain | |
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) | |
self.register_buffer('posterior_mean_coef1', to_torch( | |
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) | |
self.register_buffer('posterior_mean_coef2', to_torch( | |
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) | |
if self.parameterization == "eps": | |
lvlb_weights = self.betas ** 2 / ( | |
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)) | |
elif self.parameterization == "x0": | |
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod)) | |
else: | |
raise NotImplementedError("mu not supported") | |
# TODO how to choose this term | |
lvlb_weights[0] = lvlb_weights[1] | |
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False) | |
assert not torch.isnan(self.lvlb_weights).all() | |
def ema_scope(self, context=None): | |
if self.use_ema: | |
self.model_ema.store(self.model.parameters()) | |
self.model_ema.copy_to(self.model) | |
if context is not None: | |
mainlogger.info(f"{context}: Switched to EMA weights") | |
try: | |
yield None | |
finally: | |
if self.use_ema: | |
self.model_ema.restore(self.model.parameters()) | |
if context is not None: | |
mainlogger.info(f"{context}: Restored training weights") | |
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): | |
sd = torch.load(path, map_location="cpu") | |
if "state_dict" in list(sd.keys()): | |
sd = sd["state_dict"] | |
keys = list(sd.keys()) | |
for k in keys: | |
for ik in ignore_keys: | |
if k.startswith(ik): | |
mainlogger.info("Deleting key {} from state_dict.".format(k)) | |
del sd[k] | |
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( | |
sd, strict=False) | |
mainlogger.info(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") | |
if len(missing) > 0: | |
mainlogger.info(f"Missing Keys: {missing}") | |
if len(unexpected) > 0: | |
mainlogger.info(f"Unexpected Keys: {unexpected}") | |
def q_mean_variance(self, x_start, t): | |
""" | |
Get the distribution q(x_t | x_0). | |
:param x_start: the [N x C x ...] tensor of noiseless inputs. | |
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
:return: A tuple (mean, variance, log_variance), all of x_start's shape. | |
""" | |
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start) | |
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) | |
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) | |
return mean, variance, log_variance | |
def predict_start_from_noise(self, x_t, t, noise): | |
return ( | |
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - | |
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise | |
) | |
def q_posterior(self, x_start, x_t, t): | |
posterior_mean = ( | |
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + | |
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t | |
) | |
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) | |
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape) | |
return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
def p_mean_variance(self, x, t, clip_denoised: bool): | |
model_out = self.model(x, t) | |
if self.parameterization == "eps": | |
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) | |
elif self.parameterization == "x0": | |
x_recon = model_out | |
if clip_denoised: | |
x_recon.clamp_(-1., 1.) | |
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) | |
return model_mean, posterior_variance, posterior_log_variance | |
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): | |
b, *_, device = *x.shape, x.device | |
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised) | |
noise = noise_like(x.shape, device, repeat_noise) | |
# no noise when t == 0 | |
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise | |
def p_sample_loop(self, shape, return_intermediates=False): | |
device = self.betas.device | |
b = shape[0] | |
img = torch.randn(shape, device=device) | |
intermediates = [img] | |
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps): | |
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long), | |
clip_denoised=self.clip_denoised) | |
if i % self.log_every_t == 0 or i == self.num_timesteps - 1: | |
intermediates.append(img) | |
if return_intermediates: | |
return img, intermediates | |
return img | |
def sample(self, batch_size=16, return_intermediates=False): | |
image_size = self.image_size | |
channels = self.channels | |
return self.p_sample_loop((batch_size, channels, image_size, image_size), | |
return_intermediates=return_intermediates) | |
def q_sample(self, x_start, t, noise=None): | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + | |
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) | |
def get_loss(self, pred, target, mean=True): | |
if self.loss_type == 'l1': | |
loss = (target - pred).abs() | |
if mean: | |
loss = loss.mean() | |
elif self.loss_type == 'l2': | |
if mean: | |
loss = torch.nn.functional.mse_loss(target, pred) | |
else: | |
loss = torch.nn.functional.mse_loss(target, pred, reduction='none') | |
else: | |
raise NotImplementedError("unknown loss type '{loss_type}'") | |
return loss | |
def p_losses(self, x_start, t, noise=None): | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
model_out = self.model(x_noisy, t) | |
loss_dict = {} | |
if self.parameterization == "eps": | |
target = noise | |
elif self.parameterization == "x0": | |
target = x_start | |
else: | |
raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported") | |
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3]) | |
log_prefix = 'train' if self.training else 'val' | |
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()}) | |
loss_simple = loss.mean() * self.l_simple_weight | |
loss_vlb = (self.lvlb_weights[t] * loss).mean() | |
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb}) | |
loss = loss_simple + self.original_elbo_weight * loss_vlb | |
loss_dict.update({f'{log_prefix}/loss': loss}) | |
return loss, loss_dict | |
def forward(self, x, *args, **kwargs): | |
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size | |
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}' | |
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() | |
return self.p_losses(x, t, *args, **kwargs) | |
def get_input(self, batch, k): | |
x = batch[k] | |
''' | |
if len(x.shape) == 3: | |
x = x[..., None] | |
x = rearrange(x, 'b h w c -> b c h w') | |
''' | |
x = x.to(memory_format=torch.contiguous_format).float() | |
return x | |
def shared_step(self, batch): | |
x = self.get_input(batch, self.first_stage_key) | |
loss, loss_dict = self(x) | |
return loss, loss_dict | |
def training_step(self, batch, batch_idx): | |
loss, loss_dict = self.shared_step(batch) | |
self.log_dict(loss_dict, prog_bar=True, | |
logger=True, on_step=True, on_epoch=True) | |
self.log("global_step", self.global_step, | |
prog_bar=True, logger=True, on_step=True, on_epoch=False) | |
if self.use_scheduler: | |
lr = self.optimizers().param_groups[0]['lr'] | |
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False) | |
return loss | |
def validation_step(self, batch, batch_idx): | |
_, loss_dict_no_ema = self.shared_step(batch) | |
with self.ema_scope(): | |
_, loss_dict_ema = self.shared_step(batch) | |
loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema} | |
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) | |
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) | |
def on_train_batch_end(self, *args, **kwargs): | |
if self.use_ema: | |
self.model_ema(self.model) | |
def _get_rows_from_list(self, samples): | |
n_imgs_per_row = len(samples) | |
denoise_grid = rearrange(samples, 'n b c h w -> b n c h w') | |
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') | |
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) | |
return denoise_grid | |
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): | |
log = dict() | |
x = self.get_input(batch, self.first_stage_key) | |
N = min(x.shape[0], N) | |
n_row = min(x.shape[0], n_row) | |
x = x.to(self.device)[:N] | |
log["inputs"] = x | |
# get diffusion row | |
diffusion_row = list() | |
x_start = x[:n_row] | |
for t in range(self.num_timesteps): | |
if t % self.log_every_t == 0 or t == self.num_timesteps - 1: | |
t = repeat(torch.tensor([t]), '1 -> b', b=n_row) | |
t = t.to(self.device).long() | |
noise = torch.randn_like(x_start) | |
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
diffusion_row.append(x_noisy) | |
log["diffusion_row"] = self._get_rows_from_list(diffusion_row) | |
if sample: | |
# get denoise row | |
with self.ema_scope("Plotting"): | |
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True) | |
log["samples"] = samples | |
log["denoise_row"] = self._get_rows_from_list(denoise_row) | |
if return_keys: | |
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: | |
return log | |
else: | |
return {key: log[key] for key in return_keys} | |
return log | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
params = list(self.model.parameters()) | |
if self.learn_logvar: | |
params = params + [self.logvar] | |
opt = torch.optim.AdamW(params, lr=lr) | |
return opt | |
class LatentDiffusion(DDPM): | |
"""main class""" | |
def __init__(self, | |
first_stage_config, | |
cond_stage_config, | |
num_timesteps_cond=None, | |
cond_stage_key="caption", | |
cond_stage_trainable=False, | |
cond_stage_forward=None, | |
conditioning_key=None, | |
uncond_prob=0.2, | |
uncond_type="empty_seq", | |
scale_factor=1.0, | |
scale_by_std=False, | |
# added for LVDM | |
encoder_type="2d", | |
frame_cond=None, | |
only_model=False, | |
logdir=None, | |
empty_params_only=False, | |
*args, **kwargs): | |
self.num_timesteps_cond = default(num_timesteps_cond, 1) | |
self.scale_by_std = scale_by_std | |
assert self.num_timesteps_cond <= kwargs['timesteps'] | |
# for backwards compatibility after implementation of DiffusionWrapper | |
ckpt_path = kwargs.pop("ckpt_path", None) | |
ignore_keys = kwargs.pop("ignore_keys", []) | |
conditioning_key = default(conditioning_key, 'crossattn') | |
super().__init__(conditioning_key=conditioning_key, *args, **kwargs) | |
self.cond_stage_trainable = cond_stage_trainable | |
self.cond_stage_key = cond_stage_key | |
self.empty_params_only = empty_params_only | |
try: | |
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 | |
except: | |
self.num_downs = 0 | |
if not scale_by_std: | |
self.scale_factor = scale_factor | |
else: | |
self.register_buffer('scale_factor', torch.tensor(scale_factor)) | |
self.instantiate_first_stage(first_stage_config) | |
self.instantiate_cond_stage(cond_stage_config) | |
self.first_stage_config = first_stage_config | |
self.cond_stage_config = cond_stage_config | |
self.clip_denoised = False | |
self.cond_stage_forward = cond_stage_forward | |
self.encoder_type = encoder_type | |
assert(encoder_type in ["2d", "3d"]) | |
self.uncond_prob = uncond_prob | |
self.classifier_free_guidance = True if uncond_prob > 0 else False | |
assert(uncond_type in ["zero_embed", "empty_seq"]) | |
self.uncond_type = uncond_type | |
## future frame prediction | |
self.frame_cond = frame_cond | |
if self.frame_cond: | |
# frame_len = self.model.diffusion_model.temporal_length | |
frame_len = self.temporal_length | |
cond_mask = torch.zeros(frame_len, dtype=torch.float32) | |
cond_mask[:self.frame_cond] = 1.0 | |
## b,c,t,h,w | |
self.cond_mask = cond_mask[None,None,:,None,None] | |
mainlogger.info("---training for %d-frame conditoning T2V"%(self.frame_cond)) | |
else: | |
self.cond_mask = None | |
self.restarted_from_ckpt = False | |
if ckpt_path is not None: | |
self.init_from_ckpt(ckpt_path, ignore_keys, only_model=only_model) | |
self.restarted_from_ckpt = True | |
self.logdir = logdir | |
def make_cond_schedule(self, ): | |
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long) | |
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long() | |
self.cond_ids[:self.num_timesteps_cond] = ids | |
def on_train_batch_start(self, batch, batch_idx, dataloader_idx=None): | |
# only for very first batch, reset the self.scale_factor | |
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and \ | |
not self.restarted_from_ckpt: | |
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously' | |
# set rescale weight to 1./std of encodings | |
mainlogger.info("### USING STD-RESCALING ###") | |
x = super().get_input(batch, self.first_stage_key) | |
x = x.to(self.device) | |
encoder_posterior = self.encode_first_stage(x) | |
z = self.get_first_stage_encoding(encoder_posterior).detach() | |
del self.scale_factor | |
self.register_buffer('scale_factor', 1. / z.flatten().std()) | |
mainlogger.info(f"setting self.scale_factor to {self.scale_factor}") | |
mainlogger.info("### USING STD-RESCALING ###") | |
mainlogger.info(f"std={z.flatten().std()}") | |
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, | |
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): | |
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s) | |
self.shorten_cond_schedule = self.num_timesteps_cond > 1 | |
if self.shorten_cond_schedule: | |
self.make_cond_schedule() | |
def instantiate_first_stage(self, config): | |
model = instantiate_from_config(config) | |
self.first_stage_model = model.eval() | |
self.first_stage_model.train = disabled_train | |
for param in self.first_stage_model.parameters(): | |
param.requires_grad = False | |
def instantiate_cond_stage(self, config): | |
if not self.cond_stage_trainable: | |
model = instantiate_from_config(config) | |
self.cond_stage_model = model.eval() | |
self.cond_stage_model.train = disabled_train | |
for param in self.cond_stage_model.parameters(): | |
param.requires_grad = False | |
else: | |
model = instantiate_from_config(config) | |
self.cond_stage_model = model | |
def get_learned_conditioning(self, c): | |
if self.cond_stage_forward is None: | |
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): | |
c = self.cond_stage_model.encode(c) | |
if isinstance(c, DiagonalGaussianDistribution): | |
c = c.mode() | |
else: | |
c = self.cond_stage_model(c) | |
else: | |
assert hasattr(self.cond_stage_model, self.cond_stage_forward) | |
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) | |
return c | |
def get_first_stage_encoding(self, encoder_posterior, noise=None): | |
if isinstance(encoder_posterior, DiagonalGaussianDistribution): | |
z = encoder_posterior.sample(noise=noise) | |
elif isinstance(encoder_posterior, torch.Tensor): | |
z = encoder_posterior | |
else: | |
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented") | |
return self.scale_factor * z | |
def encode_first_stage(self, x): | |
if self.encoder_type == "2d" and x.dim() == 5: | |
return self.encode_first_stage_2DAE(x) | |
encoder_posterior = self.first_stage_model.encode(x) | |
results = self.get_first_stage_encoding(encoder_posterior).detach() | |
return results | |
def encode_first_stage_2DAE(self, x): | |
"""encode frame by frame""" | |
b, _, t, _, _ = x.shape | |
results = torch.cat([self.get_first_stage_encoding(self.first_stage_model.encode(x[:,:,i])).detach().unsqueeze(2) for i in range(t)], dim=2) | |
return results | |
def decode_first_stage_2DAE(self, z, **kwargs): | |
"""decode frame by frame""" | |
_, _, t, _, _ = z.shape | |
results = torch.cat([self.first_stage_model.decode(z[:,:,i], **kwargs).unsqueeze(2) for i in range(t)], dim=2) | |
return results | |
def _decode_core(self, z, **kwargs): | |
z = 1. / self.scale_factor * z | |
if self.encoder_type == "2d" and z.dim() == 5: | |
return self.decode_first_stage_2DAE(z) | |
results = self.first_stage_model.decode(z, **kwargs) | |
return results | |
def decode_first_stage(self, z, **kwargs): | |
return self._decode_core(z, **kwargs) | |
def differentiable_decode_first_stage(self, z, **kwargs): | |
"""same as decode_first_stage but without decorator""" | |
return self._decode_core(z, **kwargs) | |
def get_batch_input(self, batch, random_uncond, return_first_stage_outputs=False, return_original_cond=False, is_imgbatch=False): | |
## image/video shape: b, c, t, h, w | |
data_key = 'jpg' if is_imgbatch else self.first_stage_key | |
x = super().get_input(batch, data_key) | |
if is_imgbatch: | |
## pack image as video | |
#x = x[:,:,None,:,:] | |
b = x.shape[0] // self.temporal_length | |
x = rearrange(x, '(b t) c h w -> b c t h w', b=b, t=self.temporal_length) | |
x_ori = x | |
## encode video frames x to z via a 2D encoder | |
z = self.encode_first_stage(x) | |
## get caption condition | |
cond_key = 'txt' if is_imgbatch else self.cond_stage_key | |
cond = batch[cond_key] | |
if random_uncond and self.uncond_type == 'empty_seq': | |
for i, ci in enumerate(cond): | |
if random.random() < self.uncond_prob: | |
cond[i] = "" | |
if isinstance(cond, dict) or isinstance(cond, list): | |
cond_emb = self.get_learned_conditioning(cond) | |
else: | |
cond_emb = self.get_learned_conditioning(cond.to(self.device)) | |
if random_uncond and self.uncond_type == 'zero_embed': | |
for i, ci in enumerate(cond): | |
if random.random() < self.uncond_prob: | |
cond_emb[i] = torch.zeros_like(ci) | |
out = [z, cond_emb] | |
## optional output: self-reconst or caption | |
if return_first_stage_outputs: | |
xrec = self.decode_first_stage(z) | |
out.extend([x_ori, xrec]) | |
if return_original_cond: | |
out.append(cond) | |
return out | |
def forward(self, x, c, **kwargs): | |
if 't' in kwargs: | |
t = kwargs.pop('t') | |
else: | |
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() | |
return self.p_losses(x, c, t, **kwargs) | |
def shared_step(self, batch, random_uncond, **kwargs): | |
is_imgbatch = False | |
if "loader_img" in batch.keys(): | |
ratio = 10.0 / self.temporal_length | |
if random.uniform(0.,10.) < ratio: | |
is_imgbatch = True | |
batch = batch["loader_img"] | |
else: | |
batch = batch["loader_video"] | |
else: | |
pass | |
x, c = self.get_batch_input(batch, random_uncond=random_uncond, is_imgbatch=is_imgbatch) | |
loss, loss_dict = self(x, c, is_imgbatch=is_imgbatch, **kwargs) | |
return loss, loss_dict | |
def apply_model(self, x_noisy, t, cond, **kwargs): | |
if isinstance(cond, dict): | |
# hybrid case, cond is exptected to be a dict | |
pass | |
else: | |
if not isinstance(cond, list): | |
cond = [cond] | |
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn' | |
cond = {key: cond} | |
x_recon = self.model(x_noisy, t, **cond, **kwargs) | |
if isinstance(x_recon, tuple): | |
return x_recon[0] | |
else: | |
return x_recon | |
def p_losses(self, x_start, cond, t, noise=None, **kwargs): | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
if self.frame_cond: | |
if self.cond_mask.device is not self.device: | |
self.cond_mask = self.cond_mask.to(self.device) | |
## condition on fist few frames | |
x_noisy = x_start * self.cond_mask + (1.-self.cond_mask) * x_noisy | |
model_output = self.apply_model(x_noisy, t, cond, **kwargs) | |
loss_dict = {} | |
prefix = 'train' if self.training else 'val' | |
if self.parameterization == "x0": | |
target = x_start | |
elif self.parameterization == "eps": | |
target = noise | |
else: | |
raise NotImplementedError() | |
if self.frame_cond: | |
## [b,c,t,h,w]: only care about the predicted part (avoid disturbance) | |
model_output = model_output[:,:,self.frame_cond:,:,:] | |
target = target[:,:,self.frame_cond:,:,:] | |
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3, 4]) | |
if torch.isnan(loss_simple).any(): | |
print(f"loss_simple exists nan: {loss_simple}") | |
# import pdb; pdb.set_trace() | |
for i in range(loss_simple.shape[0]): | |
if torch.isnan(loss_simple[i]).any(): | |
loss_simple[i] = torch.zeros_like(loss_simple[i]) | |
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()}) | |
if self.logvar.device is not self.device: | |
self.logvar = self.logvar.to(self.device) | |
logvar_t = self.logvar[t] | |
# logvar_t = self.logvar[t.item()].to(self.device) # device conflict when ddp shared | |
loss = loss_simple / torch.exp(logvar_t) + logvar_t | |
# loss = loss_simple / torch.exp(self.logvar) + self.logvar | |
if self.learn_logvar: | |
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()}) | |
loss_dict.update({'logvar': self.logvar.data.mean()}) | |
loss = self.l_simple_weight * loss.mean() | |
if self.original_elbo_weight > 0: | |
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3, 4)) | |
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() | |
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb}) | |
loss += (self.original_elbo_weight * loss_vlb) | |
loss_dict.update({f'{prefix}/loss': loss}) | |
return loss, loss_dict | |
def training_step(self, batch, batch_idx): | |
loss, loss_dict = self.shared_step(batch, random_uncond=self.classifier_free_guidance) | |
## sync_dist | rank_zero_only | |
self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=False) | |
#self.log("epoch/global_step", self.global_step.float(), prog_bar=True, logger=True, on_step=True, on_epoch=False) | |
''' | |
if self.use_scheduler: | |
lr = self.optimizers().param_groups[0]['lr'] | |
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False, rank_zero_only=True) | |
''' | |
if (batch_idx+1) % self.log_every_t == 0: | |
mainlogger.info(f"batch:{batch_idx}|epoch:{self.current_epoch} [globalstep:{self.global_step}]: loss={loss}") | |
return loss | |
def _get_denoise_row_from_list(self, samples, desc=''): | |
denoise_row = [] | |
for zd in tqdm(samples, desc=desc): | |
denoise_row.append(self.decode_first_stage(zd.to(self.device))) | |
n_log_timesteps = len(denoise_row) | |
denoise_row = torch.stack(denoise_row) # n_log_timesteps, b, C, H, W | |
if denoise_row.dim() == 5: | |
# img, num_imgs= n_log_timesteps * bs, grid_size=[bs,n_log_timesteps] | |
# 先batch再n,grid时候一行是一个sample的不同steps,batch是列,行是n | |
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w') | |
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') | |
denoise_grid = make_grid(denoise_grid, nrow=n_log_timesteps) | |
elif denoise_row.dim() == 6: | |
# video, grid_size=[n_log_timesteps*bs, t] | |
video_length = denoise_row.shape[3] | |
denoise_grid = rearrange(denoise_row, 'n b c t h w -> b n c t h w') | |
denoise_grid = rearrange(denoise_grid, 'b n c t h w -> (b n) c t h w') | |
denoise_grid = rearrange(denoise_grid, 'n c t h w -> (n t) c h w') | |
denoise_grid = make_grid(denoise_grid, nrow=video_length) | |
else: | |
raise ValueError | |
return denoise_grid | |
def log_images(self, batch, sample=True, ddim_steps=200, ddim_eta=1., plot_denoise_rows=False, \ | |
unconditional_guidance_scale=1.0, **kwargs): | |
""" log images for LatentDiffusion """ | |
## TBD: currently, classifier_free_guidance sampling is only supported by DDIM | |
use_ddim = ddim_steps is not None | |
log = dict() | |
z, c, x, xrec, xc = self.get_batch_input(batch, random_uncond=False, | |
return_first_stage_outputs=True, | |
return_original_cond=True) | |
N, _, T, H, W = x.shape | |
log["inputs"] = x | |
log["reconst"] = xrec | |
log["condition"] = xc | |
if sample: | |
# get uncond embedding for classifier-free guidance sampling | |
if unconditional_guidance_scale != 1.0: | |
if isinstance(c, dict): | |
c_cat, c_emb = c["c_concat"][0], c["c_crossattn"][0] | |
#log["condition_cat"] = c_cat | |
else: | |
c_emb = c | |
if self.uncond_type == "empty_seq": | |
prompts = N * [""] | |
uc = self.get_learned_conditioning(prompts) | |
elif self.uncond_type == "zero_embed": | |
uc = torch.zeros_like(c_emb) | |
## hybrid case | |
if isinstance(c, dict): | |
uc_hybrid = {"c_concat": [c_cat], "c_crossattn": [uc]} | |
uc = uc_hybrid | |
else: | |
uc = None | |
with self.ema_scope("Plotting"): | |
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, | |
ddim_steps=ddim_steps,eta=ddim_eta, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=uc, mask=self.cond_mask, x0=z, **kwargs) | |
x_samples = self.decode_first_stage(samples) | |
log["samples"] = x_samples | |
if plot_denoise_rows: | |
denoise_grid = self._get_denoise_row_from_list(z_denoise_row) | |
log["denoise_row"] = denoise_grid | |
return log | |
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_x0=False, score_corrector=None, corrector_kwargs=None, **kwargs): | |
t_in = t | |
model_out = self.apply_model(x, t_in, c, **kwargs) | |
if score_corrector is not None: | |
assert self.parameterization == "eps" | |
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs) | |
if self.parameterization == "eps": | |
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) | |
elif self.parameterization == "x0": | |
x_recon = model_out | |
else: | |
raise NotImplementedError() | |
if clip_denoised: | |
x_recon.clamp_(-1., 1.) | |
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) | |
if return_x0: | |
return model_mean, posterior_variance, posterior_log_variance, x_recon | |
else: | |
return model_mean, posterior_variance, posterior_log_variance | |
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, return_x0=False, \ | |
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, **kwargs): | |
b, *_, device = *x.shape, x.device | |
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, return_x0=return_x0, \ | |
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, **kwargs) | |
if return_x0: | |
model_mean, _, model_log_variance, x0 = outputs | |
else: | |
model_mean, _, model_log_variance = outputs | |
noise = noise_like(x.shape, device, repeat_noise) * temperature | |
if noise_dropout > 0.: | |
noise = torch.nn.functional.dropout(noise, p=noise_dropout) | |
# no noise when t == 0 | |
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) | |
if return_x0: | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0 | |
else: | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise | |
def p_sample_loop(self, cond, shape, return_intermediates=False, x_T=None, verbose=True, callback=None, \ | |
timesteps=None, mask=None, x0=None, img_callback=None, start_T=None, log_every_t=None, **kwargs): | |
if not log_every_t: | |
log_every_t = self.log_every_t | |
device = self.betas.device | |
b = shape[0] | |
# sample an initial noise | |
if x_T is None: | |
img = torch.randn(shape, device=device) | |
else: | |
img = x_T | |
intermediates = [img] | |
if timesteps is None: | |
timesteps = self.num_timesteps | |
if start_T is not None: | |
timesteps = min(timesteps, start_T) | |
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(range(0, timesteps)) | |
if mask is not None: | |
assert x0 is not None | |
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match | |
for i in iterator: | |
ts = torch.full((b,), i, device=device, dtype=torch.long) | |
if self.shorten_cond_schedule: | |
assert self.model.conditioning_key != 'hybrid' | |
tc = self.cond_ids[ts].to(cond.device) | |
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) | |
img = self.p_sample(img, cond, ts, clip_denoised=self.clip_denoised, **kwargs) | |
if mask is not None: | |
img_orig = self.q_sample(x0, ts) | |
img = img_orig * mask + (1. - mask) * img | |
if i % log_every_t == 0 or i == timesteps - 1: | |
intermediates.append(img) | |
if callback: callback(i) | |
if img_callback: img_callback(img, i) | |
if return_intermediates: | |
return img, intermediates | |
return img | |
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None, \ | |
verbose=True, timesteps=None, mask=None, x0=None, shape=None, **kwargs): | |
if shape is None: | |
shape = (batch_size, self.channels, self.temporal_length, *self.image_size) | |
if cond is not None: | |
if isinstance(cond, dict): | |
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else | |
list(map(lambda x: x[:batch_size], cond[key])) for key in cond} | |
else: | |
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] | |
return self.p_sample_loop(cond, | |
shape, | |
return_intermediates=return_intermediates, x_T=x_T, | |
verbose=verbose, timesteps=timesteps, | |
mask=mask, x0=x0, **kwargs) | |
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs): | |
if ddim: | |
ddim_sampler = DDIMSampler(self) | |
shape = (self.channels, self.temporal_length, *self.image_size) | |
kwargs.update({"clean_cond": True}) | |
samples, intermediates =ddim_sampler.sample(ddim_steps, batch_size, shape, cond, verbose=False, **kwargs) | |
else: | |
samples, intermediates = self.sample(cond=cond, batch_size=batch_size, return_intermediates=True, **kwargs) | |
return samples, intermediates | |
def configure_optimizers(self): | |
""" configure_optimizers for LatentDiffusion """ | |
lr = self.learning_rate | |
if self.empty_params_only and hasattr(self, "empty_paras"): | |
params = [p for n, p in self.model.named_parameters() if n in self.empty_paras] | |
print('self.empty_paras', len(self.empty_paras)) | |
for n, p in self.model.named_parameters(): | |
if n not in self.empty_paras: | |
p.requires_grad = False | |
mainlogger.info(f"@Training [{len(params)}] Empty Paramters ONLY.") | |
else: | |
params = list(self.model.parameters()) | |
mainlogger.info(f"@Training [{len(params)}] Full Paramters.") | |
if self.learn_logvar: | |
mainlogger.info('Diffusion model optimizing logvar') | |
if isinstance(params[0], dict): | |
params.append({"params": [self.logvar]}) | |
else: | |
params.append(self.logvar) | |
## optimizer | |
optimizer = torch.optim.AdamW(params, lr=lr) | |
## lr scheduler | |
if self.use_scheduler: | |
mainlogger.info("Setting up LambdaLR scheduler...") | |
lr_scheduler = self.configure_schedulers(optimizer) | |
return [optimizer], [lr_scheduler] | |
return optimizer | |
def configure_schedulers(self, optimizer): | |
assert 'target' in self.scheduler_config | |
scheduler_name = self.scheduler_config.target.split('.')[-1] | |
interval = self.scheduler_config.interval | |
frequency = self.scheduler_config.frequency | |
if scheduler_name == "LambdaLRScheduler": | |
scheduler = instantiate_from_config(self.scheduler_config) | |
scheduler.start_step = self.global_step | |
lr_scheduler = { | |
'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule), | |
'interval': interval, | |
'frequency': frequency | |
} | |
elif scheduler_name == "CosineAnnealingLRScheduler": | |
scheduler = instantiate_from_config(self.scheduler_config) | |
decay_steps = scheduler.decay_steps | |
last_step = -1 if self.global_step == 0 else scheduler.start_step | |
lr_scheduler = { | |
'scheduler': CosineAnnealingLR(optimizer, T_max=decay_steps, last_epoch=last_step), | |
'interval': interval, | |
'frequency': frequency | |
} | |
else: | |
raise NotImplementedError | |
return lr_scheduler | |
class DiffusionWrapper(pl.LightningModule): | |
def __init__(self, diff_model_config, conditioning_key): | |
super().__init__() | |
self.diffusion_model = instantiate_from_config(diff_model_config) | |
self.conditioning_key = conditioning_key | |
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, | |
c_adm=None, s=None, mask=None, **kwargs): | |
# temporal_context = fps is foNone | |
if self.conditioning_key is None: | |
out = self.diffusion_model(x, t) | |
elif self.conditioning_key == 'concat': | |
xc = torch.cat([x] + c_concat, dim=1) | |
out = self.diffusion_model(xc, t, **kwargs) | |
elif self.conditioning_key == 'crossattn': | |
cc = torch.cat(c_crossattn, 1) | |
out = self.diffusion_model(x, t, context=cc, **kwargs) | |
elif self.conditioning_key == 'hybrid': | |
## it is just right [b,c,t,h,w]: concatenate in channel dim | |
xc = torch.cat([x] + c_concat, dim=1) | |
cc = torch.cat(c_crossattn, 1) | |
out = self.diffusion_model(xc, t, context=cc, **kwargs) | |
elif self.conditioning_key == 'resblockcond': | |
cc = c_crossattn[0] | |
out = self.diffusion_model(x, t, context=cc) | |
elif self.conditioning_key == 'adm': | |
cc = c_crossattn[0] | |
out = self.diffusion_model(x, t, y=cc) | |
elif self.conditioning_key == 'hybrid-adm': | |
assert c_adm is not None | |
xc = torch.cat([x] + c_concat, dim=1) | |
cc = torch.cat(c_crossattn, 1) | |
out = self.diffusion_model(xc, t, context=cc, y=c_adm, **kwargs) | |
elif self.conditioning_key == 'hybrid-time': | |
assert s is not None | |
xc = torch.cat([x] + c_concat, dim=1) | |
cc = torch.cat(c_crossattn, 1) | |
out = self.diffusion_model(xc, t, context=cc, s=s) | |
elif self.conditioning_key == 'concat-time-mask': | |
# assert s is not None | |
# mainlogger.info('x & mask:',x.shape,c_concat[0].shape) | |
xc = torch.cat([x] + c_concat, dim=1) | |
out = self.diffusion_model(xc, t, context=None, s=s, mask=mask) | |
elif self.conditioning_key == 'concat-adm-mask': | |
# assert s is not None | |
# mainlogger.info('x & mask:',x.shape,c_concat[0].shape) | |
if c_concat is not None: | |
xc = torch.cat([x] + c_concat, dim=1) | |
else: | |
xc = x | |
out = self.diffusion_model(xc, t, context=None, y=s, mask=mask) | |
elif self.conditioning_key == 'hybrid-adm-mask': | |
cc = torch.cat(c_crossattn, 1) | |
if c_concat is not None: | |
xc = torch.cat([x] + c_concat, dim=1) | |
else: | |
xc = x | |
out = self.diffusion_model(xc, t, context=cc, y=s, mask=mask) | |
elif self.conditioning_key == 'hybrid-time-adm': # adm means y, e.g., class index | |
# assert s is not None | |
assert c_adm is not None | |
xc = torch.cat([x] + c_concat, dim=1) | |
cc = torch.cat(c_crossattn, 1) | |
out = self.diffusion_model(xc, t, context=cc, s=s, y=c_adm) | |
else: | |
raise NotImplementedError() | |
return out |