MotionCtrl / gradio_utils /camera_utils.py
wzhouxiff's picture
init
f1df74a
raw
history blame
4.82 kB
import copy
# import plotly.express as px
# import plotly.graph_objects as go
import json
import numpy as np
CAMERA_MOTION_MODE = ["Basic Camera Poses", "Provided Complex Camera Poses", "Customize Camera Poses"]
CAMERA = {
# T
"base_T_norm": 1.5,
"base_angle": np.pi/3,
"Pan Up": { "angle":[0., 0., 0.], "T":[0., 1., 0.]},
"Pan Down": { "angle":[0., 0., 0.], "T":[0.,-1.,0.]},
"Pan Left": { "angle":[0., 0., 0.], "T":[1.,0.,0.]},
"Pan Right": { "angle":[0., 0., 0.], "T": [-1.,0.,0.]},
"Zoom In": { "angle":[0., 0., 0.], "T": [0.,0.,-2.]},
"Zoom Out": { "angle":[0., 0., 0.], "T": [0.,0.,2.]},
"ACW": { "angle": [0., 0., 1.], "T":[0., 0., 0.]},
"CW": { "angle": [0., 0., -1.], "T":[0., 0., 0.]},
}
COMPLEX_CAMERA = {
"Pose_1": "examples/camera_poses/test_camera_1424acd0007d40b5.json",
"Pose_2": "examples/camera_poses/test_camera_d971457c81bca597.json",
"Pose_3": "examples/camera_poses/test_camera_Round-ZoomIn.json",
"Pose_4": "examples/camera_poses/test_camera_Round-RI_90.json",
"Pose_5": "examples/camera_poses/test_camera_Round-RI_120.json",
"Pose_6": "examples/camera_poses/test_camera_018f7907401f2fef.json",
"Pose_7": "examples/camera_poses/test_camera_088b93f15ca8745d.json",
"Pose_8": "examples/camera_poses/test_camera_b133a504fc90a2d1.json",
}
def compute_R_form_rad_angle(angles):
theta_x, theta_y, theta_z = angles
Rx = np.array([[1, 0, 0],
[0, np.cos(theta_x), -np.sin(theta_x)],
[0, np.sin(theta_x), np.cos(theta_x)]])
Ry = np.array([[np.cos(theta_y), 0, np.sin(theta_y)],
[0, 1, 0],
[-np.sin(theta_y), 0, np.cos(theta_y)]])
Rz = np.array([[np.cos(theta_z), -np.sin(theta_z), 0],
[np.sin(theta_z), np.cos(theta_z), 0],
[0, 0, 1]])
# 计算相机外参的旋转矩阵
R = np.dot(Rz, np.dot(Ry, Rx))
return R
def get_camera_motion(angle, T, speed, n=16):
RT = []
for i in range(n):
_angle = (i/n)*speed*(CAMERA["base_angle"])*angle
R = compute_R_form_rad_angle(_angle)
# _T = (i/n)*speed*(T.reshape(3,1))
_T=(i/n)*speed*(CAMERA["base_T_norm"])*(T.reshape(3,1))
_RT = np.concatenate([R,_T], axis=1)
RT.append(_RT)
RT = np.stack(RT)
return RT
def create_relative(RT_list, K_1=4.7, dataset="syn"):
RT = copy.deepcopy(RT_list[0])
R_inv = RT[:,:3].T
T = RT[:,-1]
temp = []
for _RT in RT_list:
_RT[:,:3] = np.dot(_RT[:,:3], R_inv)
_RT[:,-1] = _RT[:,-1] - np.dot(_RT[:,:3], T)
temp.append(_RT)
RT_list = temp
return RT_list
def combine_camera_motion(RT_0, RT_1):
RT = copy.deepcopy(RT_0[-1])
R = RT[:,:3]
R_inv = RT[:,:3].T
T = RT[:,-1]
temp = []
for _RT in RT_1:
_RT[:,:3] = np.dot(_RT[:,:3], R)
_RT[:,-1] = _RT[:,-1] + np.dot(np.dot(_RT[:,:3], R_inv), T)
temp.append(_RT)
RT_1 = np.stack(temp)
return np.concatenate([RT_0, RT_1], axis=0)
def process_camera(camera_dict):
# "First A then B", "Both A and B", "Custom"
if camera_dict['complex'] is not None:
with open(COMPLEX_CAMERA[camera_dict['complex']]) as f:
RT = json.load(f) # [16, 12]
RT = np.array(RT).reshape(-1, 3, 4)
print(RT.shape)
return RT
motion_list = camera_dict['motion']
mode = camera_dict['mode']
speed = camera_dict['speed']
print(len(motion_list))
if len(motion_list) == 0:
angle = np.array([0,0,0])
T = np.array([0,0,0])
RT = get_camera_motion(angle, T, speed, 16)
elif len(motion_list) == 1:
angle = np.array(CAMERA[motion_list[0]]["angle"])
T = np.array(CAMERA[motion_list[0]]["T"])
print(angle, T)
RT = get_camera_motion(angle, T, speed, 16)
elif len(motion_list) == 2:
if mode == "Customized Mode 1: First A then B":
angle = np.array(CAMERA[motion_list[0]]["angle"])
T = np.array(CAMERA[motion_list[0]]["T"])
RT_0 = get_camera_motion(angle, T, speed, 8)
angle = np.array(CAMERA[motion_list[1]]["angle"])
T = np.array(CAMERA[motion_list[1]]["T"])
RT_1 = get_camera_motion(angle, T, speed, 8)
RT = combine_camera_motion(RT_0, RT_1)
elif mode == "Customized Mode 2: Both A and B":
angle = np.array(CAMERA[motion_list[0]]["angle"]) + np.array(CAMERA[motion_list[1]]["angle"])
T = np.array(CAMERA[motion_list[0]]["T"]) + np.array(CAMERA[motion_list[1]]["T"])
RT = get_camera_motion(angle, T, speed, 16)
# return RT.reshape(-1, 12)
return RT