from predict import * from transformers import BloomTokenizerFast, BloomForCausalLM import os import gradio as gr model_path = "svjack/bloom-daliy-dialogue-english" tokenizer = BloomTokenizerFast.from_pretrained(model_path) model = BloomForCausalLM.from_pretrained(model_path) obj = Obj(model, tokenizer) example_sample = [ ["This dog is fierce,", 128], ["Do you like this film?", 64], ] def demo_func(prefix, max_length): max_length = max(int(max_length), 32) l = obj.predict(prefix, max_length=max_length)[0].split("\n-----\n") l_ = [] for ele in l: if ele not in l_: l_.append(ele) l = l_ assert type(l) == type([]) return { "Dialogue Context": l } demo = gr.Interface( fn=demo_func, inputs=[gr.Text(label = "Prefix"), gr.Number(label = "Max Length", value = 128) ], outputs="json", title=f"Bloom English Daliy Dialogue Generator 🦅🌸 demonstration", examples=example_sample if example_sample else None, cache_examples = False ) demo.launch(server_name=None, server_port=None)