import os
os.system("pip install huggingface_hub")
from huggingface_hub import space_info
from predict import *
from transformers import BloomTokenizerFast, BloomForCausalLM
#import os
import gradio as gr
model_path = "svjack/bloom-daliy-dialogue-english"
tokenizer = BloomTokenizerFast.from_pretrained(model_path)
model = BloomForCausalLM.from_pretrained(model_path)
obj = Obj(model, tokenizer)
example_sample = [
["This dog is fierce,", 128],
["Do you like this film?", 64],
]
def demo_func(prefix, max_length):
max_length = max(int(max_length), 32)
l = obj.predict(prefix, max_length=max_length)[0].split("\n-----\n")
l_ = []
for ele in l:
if ele not in l_:
l_.append(ele)
l = l_
assert type(l) == type([])
return {
"Dialogue Context": l
}
markdown_exp_size = "##"
lora_repo = "svjack/chatglm3-few-shot"
lora_repo_link = "svjack/chatglm3-few-shot/?input_list_index=11"
emoji_info = space_info(lora_repo).__dict__["cardData"]["emoji"]
space_cnt = 1
task_name = "[---English Dialogue Generator---]"
description = f"{markdown_exp_size} {task_name} few shot prompt in ChatGLM3 Few Shot space repo (click submit to activate) : [{lora_repo_link}](https://huggingface.co/spaces/{lora_repo_link}) {emoji_info}"
demo = gr.Interface(
fn=demo_func,
inputs=[gr.Text(label = "Prefix"),
gr.Number(label = "Max Length", value = 128)
],
outputs="json",
title=f"Bloom English Daliy Dialogue Generator 🦅🌸 demonstration",
examples=example_sample if example_sample else None,
#description = 'This _example_ was **drive** from
[https://github.com/svjack/Daliy-Dialogue](https://github.com/svjack/Daliy-Dialogue)
\n',
description = description,
cache_examples = False
)
demo.launch(server_name=None, server_port=None)