from predict import * from transformers import ( T5ForConditionalGeneration, T5TokenizerFast as T5Tokenizer, ) import jieba.posseg as posseg model_path = "svjack/T5-dialogue-collect-v5" tokenizer = T5Tokenizer.from_pretrained(model_path) model = T5ForConditionalGeneration.from_pretrained(model_path) rec_obj = Obj(model, tokenizer) def process_one_sent(input_): assert type(input_) == type("") input_ = " ".join(map(lambda y: y.word.strip() ,filter(lambda x: x.flag != "x" , posseg.lcut(input_)))) return input_ def predict_split(sp_list, cut_tokens = True): assert type(sp_list) == type([]) if cut_tokens: src_text = ''' 根据下面的上下文进行分段: 上下文:{} 答案: '''.format(" ".join( map(process_one_sent ,sp_list) )) else: src_text = ''' 根据下面的上下文进行分段: 上下文:{} 答案: '''.format("".join(sp_list)) print(src_text) pred = rec_obj.predict(src_text)[0] pred = list(filter(lambda y: y ,map(lambda x: x.strip() ,pred.split("分段:")))) return pred