Spaces:
Running
Running
Upload 8 files
Browse files- README.md +7 -6
- app.py +57 -0
- ccip.py +238 -0
- ccip_app.py +41 -0
- requirements.txt +17 -0
- /347/217/255/345/260/274/347/211/271.png +0 -0
- /350/212/255/350/212/255/346/213/211.png +0 -0
- /350/241/214/347/247/213.png +0 -0
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
-
title: Genshin
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.10.0
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
|
|
10 |
---
|
11 |
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Genshin-Impact-Character-CCIP
|
3 |
+
emoji: 🐱🏆
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.10.0
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
license: mit
|
11 |
---
|
12 |
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from ccip import _VALID_MODEL_NAMES, _DEFAULT_MODEL_NAMES, ccip_difference, ccip_default_threshold
|
4 |
+
from datasets import load_dataset
|
5 |
+
import pathlib
|
6 |
+
|
7 |
+
# 加载数据集
|
8 |
+
Genshin_Impact_Illustration_ds = load_dataset("svjack/Genshin-Impact-Illustration")["train"]
|
9 |
+
ds_size = len(Genshin_Impact_Illustration_ds)
|
10 |
+
name_image_dict = {}
|
11 |
+
for i in range(ds_size):
|
12 |
+
row_dict = Genshin_Impact_Illustration_ds[i]
|
13 |
+
name_image_dict[row_dict["name"]] = row_dict["image"]
|
14 |
+
|
15 |
+
# 从数据集中选择一些图片作为示例
|
16 |
+
#example_images = list(name_image_dict.values())[:5] # 选择前5张图片作为示例
|
17 |
+
example_images = list(map(str ,list(pathlib.Path(".").rglob("*.png"))))
|
18 |
+
|
19 |
+
def _compare_with_dataset(imagex, model_name):
|
20 |
+
threshold = ccip_default_threshold(model_name)
|
21 |
+
results = []
|
22 |
+
|
23 |
+
for name, imagey in name_image_dict.items():
|
24 |
+
diff = ccip_difference(imagex, imagey)
|
25 |
+
result = (diff, 'Same' if diff <= threshold else 'Not Same', name)
|
26 |
+
results.append(result)
|
27 |
+
|
28 |
+
# 按照 diff 值进行排序
|
29 |
+
results.sort(key=lambda x: x[0])
|
30 |
+
|
31 |
+
return results
|
32 |
+
|
33 |
+
if __name__ == '__main__':
|
34 |
+
with gr.Blocks() as demo:
|
35 |
+
with gr.Row():
|
36 |
+
with gr.Column():
|
37 |
+
# 添加示例图片
|
38 |
+
gr_input_x = gr.Image(type='pil', label='Upload Image')
|
39 |
+
gr_model_name = gr.Dropdown(_VALID_MODEL_NAMES, value=_DEFAULT_MODEL_NAMES, label='Model')
|
40 |
+
gr_button = gr.Button(value='Compare with Dataset', variant='primary')
|
41 |
+
|
42 |
+
gr.Examples(
|
43 |
+
examples=example_images, # 示例数据
|
44 |
+
inputs=[gr_input_x], # 示例数据对应的输入组件
|
45 |
+
label="Click on an example to load it into the input."
|
46 |
+
)
|
47 |
+
|
48 |
+
with gr.Column():
|
49 |
+
gr_results = gr.Dataframe(headers=["Difference", "Prediction", "Name"], label='Comparison Results')
|
50 |
+
|
51 |
+
gr_button.click(
|
52 |
+
_compare_with_dataset,
|
53 |
+
inputs=[gr_input_x, gr_model_name],
|
54 |
+
outputs=gr_results,
|
55 |
+
)
|
56 |
+
|
57 |
+
demo.queue(os.cpu_count()).launch(share=True)
|
ccip.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os.path
|
3 |
+
from functools import lru_cache
|
4 |
+
from typing import Union, List
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
from huggingface_hub import hf_hub_download, HfFileSystem
|
9 |
+
|
10 |
+
try:
|
11 |
+
from typing import Literal
|
12 |
+
except (ModuleNotFoundError, ImportError):
|
13 |
+
from typing_extensions import Literal
|
14 |
+
|
15 |
+
from imgutils.data import MultiImagesTyping, load_images, ImageTyping
|
16 |
+
from imgutils.utils import open_onnx_model
|
17 |
+
|
18 |
+
hf_fs = HfFileSystem()
|
19 |
+
|
20 |
+
|
21 |
+
def _normalize(data, mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)):
|
22 |
+
mean, std = np.asarray(mean), np.asarray(std)
|
23 |
+
return (data - mean[:, None, None]) / std[:, None, None]
|
24 |
+
|
25 |
+
|
26 |
+
def _preprocess_image(image: Image.Image, size: int = 384):
|
27 |
+
image = image.resize((size, size), resample=Image.BILINEAR)
|
28 |
+
# noinspection PyTypeChecker
|
29 |
+
data = np.array(image).transpose(2, 0, 1).astype(np.float32) / 255.0
|
30 |
+
data = _normalize(data)
|
31 |
+
|
32 |
+
return data
|
33 |
+
|
34 |
+
|
35 |
+
@lru_cache()
|
36 |
+
def _open_feat_model(model):
|
37 |
+
return open_onnx_model(hf_hub_download(
|
38 |
+
f'deepghs/ccip_onnx',
|
39 |
+
f'{model}/model_feat.onnx',
|
40 |
+
))
|
41 |
+
|
42 |
+
|
43 |
+
@lru_cache()
|
44 |
+
def _open_metric_model(model):
|
45 |
+
return open_onnx_model(hf_hub_download(
|
46 |
+
f'deepghs/ccip_onnx',
|
47 |
+
f'{model}/model_metrics.onnx',
|
48 |
+
))
|
49 |
+
|
50 |
+
|
51 |
+
@lru_cache()
|
52 |
+
def _open_metrics(model):
|
53 |
+
with open(hf_hub_download(f'deepghs/ccip_onnx', f'{model}/metrics.json'), 'r') as f:
|
54 |
+
return json.load(f)
|
55 |
+
|
56 |
+
|
57 |
+
@lru_cache()
|
58 |
+
def _open_cluster_metrics(model):
|
59 |
+
with open(hf_hub_download(f'deepghs/ccip_onnx', f'{model}/cluster.json'), 'r') as f:
|
60 |
+
return json.load(f)
|
61 |
+
|
62 |
+
|
63 |
+
_VALID_MODEL_NAMES = [
|
64 |
+
os.path.basename(os.path.dirname(file)) for file in
|
65 |
+
hf_fs.glob('deepghs/ccip_onnx/*/model.ckpt')
|
66 |
+
]
|
67 |
+
_DEFAULT_MODEL_NAMES = 'ccip-caformer-24-randaug-pruned'
|
68 |
+
|
69 |
+
|
70 |
+
def ccip_extract_feature(image: ImageTyping, size: int = 384, model: str = _DEFAULT_MODEL_NAMES):
|
71 |
+
"""
|
72 |
+
Extracts the feature vector of the character from the given anime image.
|
73 |
+
|
74 |
+
:param image: The anime image containing a single character.
|
75 |
+
:type image: ImageTyping
|
76 |
+
|
77 |
+
:param size: The size of the input image to be used for feature extraction. (default: ``384``)
|
78 |
+
:type size: int
|
79 |
+
|
80 |
+
:param model: The name of the model to use for feature extraction. (default: ``ccip-caformer-24-randaug-pruned``)
|
81 |
+
The available model names are: ``ccip-caformer-24-randaug-pruned``,
|
82 |
+
``ccip-caformer-6-randaug-pruned_fp32``, ``ccip-caformer-5_fp32``.
|
83 |
+
:type model: str
|
84 |
+
|
85 |
+
:return: The feature vector of the character.
|
86 |
+
:rtype: numpy.ndarray
|
87 |
+
|
88 |
+
Examples::
|
89 |
+
>>> from imgutils.metrics import ccip_extract_feature
|
90 |
+
>>>
|
91 |
+
>>> feat = ccip_extract_feature('ccip/1.jpg')
|
92 |
+
>>> feat.shape, feat.dtype
|
93 |
+
((768,), dtype('float32'))
|
94 |
+
"""
|
95 |
+
return ccip_batch_extract_features([image], size, model)[0]
|
96 |
+
|
97 |
+
|
98 |
+
def ccip_batch_extract_features(images: MultiImagesTyping, size: int = 384, model: str = _DEFAULT_MODEL_NAMES):
|
99 |
+
"""
|
100 |
+
Extracts the feature vectors of multiple images using the specified model.
|
101 |
+
|
102 |
+
:param images: The input images from which to extract the feature vectors.
|
103 |
+
:type images: MultiImagesTyping
|
104 |
+
|
105 |
+
:param size: The size of the input image to be used for feature extraction. (default: ``384``)
|
106 |
+
:type size: int
|
107 |
+
|
108 |
+
:param model: The name of the model to use for feature extraction. (default: ``ccip-caformer-24-randaug-pruned``)
|
109 |
+
The available model names are: ``ccip-caformer-24-randaug-pruned``,
|
110 |
+
``ccip-caformer-6-randaug-pruned_fp32``, ``ccip-caformer-5_fp32``.
|
111 |
+
:type model: str
|
112 |
+
|
113 |
+
:return: The feature vectors of the input images.
|
114 |
+
:rtype: numpy.ndarray
|
115 |
+
|
116 |
+
Examples::
|
117 |
+
>>> from imgutils.metrics import ccip_batch_extract_features
|
118 |
+
>>>
|
119 |
+
>>> feat = ccip_batch_extract_features(['ccip/1.jpg', 'ccip/2.jpg', 'ccip/6.jpg'])
|
120 |
+
>>> feat.shape, feat.dtype
|
121 |
+
((3, 768), dtype('float32'))
|
122 |
+
"""
|
123 |
+
images = load_images(images, mode='RGB')
|
124 |
+
data = np.stack([_preprocess_image(item, size=size) for item in images]).astype(np.float32)
|
125 |
+
output, = _open_feat_model(model).run(['output'], {'input': data})
|
126 |
+
return output
|
127 |
+
|
128 |
+
|
129 |
+
_FeatureOrImage = Union[ImageTyping, np.ndarray]
|
130 |
+
|
131 |
+
|
132 |
+
def _p_feature(x: _FeatureOrImage, size: int = 384, model: str = _DEFAULT_MODEL_NAMES):
|
133 |
+
if isinstance(x, np.ndarray): # if feature
|
134 |
+
return x
|
135 |
+
else: # is image or path
|
136 |
+
return ccip_extract_feature(x, size, model)
|
137 |
+
|
138 |
+
|
139 |
+
def ccip_default_threshold(model: str = _DEFAULT_MODEL_NAMES) -> float:
|
140 |
+
"""
|
141 |
+
Retrieves the default threshold value obtained from model metrics in the Hugging Face model repository.
|
142 |
+
|
143 |
+
:param model: The name of the model to use for feature extraction. (default: ``ccip-caformer-24-randaug-pruned``)
|
144 |
+
The available model names are: ``ccip-caformer-24-randaug-pruned``,
|
145 |
+
``ccip-caformer-6-randaug-pruned_fp32``, ``ccip-caformer-5_fp32``.
|
146 |
+
:type model: str
|
147 |
+
|
148 |
+
:return: The default threshold value obtained from model metrics.
|
149 |
+
:rtype: float
|
150 |
+
|
151 |
+
Examples::
|
152 |
+
>>> from imgutils.metrics import ccip_default_threshold
|
153 |
+
>>>
|
154 |
+
>>> ccip_default_threshold()
|
155 |
+
0.17847511429108218
|
156 |
+
>>> ccip_default_threshold('ccip-caformer-6-randaug-pruned_fp32')
|
157 |
+
0.1951224011983088
|
158 |
+
>>> ccip_default_threshold('ccip-caformer-5_fp32')
|
159 |
+
0.18397327797685215
|
160 |
+
"""
|
161 |
+
return _open_metrics(model)['threshold']
|
162 |
+
|
163 |
+
|
164 |
+
def ccip_difference(x: _FeatureOrImage, y: _FeatureOrImage,
|
165 |
+
size: int = 384, model: str = _DEFAULT_MODEL_NAMES) -> float:
|
166 |
+
"""
|
167 |
+
Calculates the difference value between two anime characters based on their images or feature vectors.
|
168 |
+
|
169 |
+
:param x: The image or feature vector of the first anime character.
|
170 |
+
:type x: Union[ImageTyping, np.ndarray]
|
171 |
+
|
172 |
+
:param y: The image or feature vector of the second anime character.
|
173 |
+
:type y: Union[ImageTyping, np.ndarray]
|
174 |
+
|
175 |
+
:param size: The size of the input image to be used for feature extraction. (default: ``384``)
|
176 |
+
:type size: int
|
177 |
+
|
178 |
+
:param model: The name of the model to use for feature extraction. (default: ``ccip-caformer-24-randaug-pruned``)
|
179 |
+
The available model names are: ``ccip-caformer-24-randaug-pruned``,
|
180 |
+
``ccip-caformer-6-randaug-pruned_fp32``, ``ccip-caformer-5_fp32``.
|
181 |
+
:type model: str
|
182 |
+
|
183 |
+
:return: The difference value between the two anime characters.
|
184 |
+
:rtype: float
|
185 |
+
|
186 |
+
Examples::
|
187 |
+
>>> from imgutils.metrics import ccip_difference
|
188 |
+
>>>
|
189 |
+
>>> ccip_difference('ccip/1.jpg', 'ccip/2.jpg') # same character
|
190 |
+
0.16583099961280823
|
191 |
+
>>>
|
192 |
+
>>> # different characters
|
193 |
+
>>> ccip_difference('ccip/1.jpg', 'ccip/6.jpg')
|
194 |
+
0.42947039008140564
|
195 |
+
>>> ccip_difference('ccip/1.jpg', 'ccip/7.jpg')
|
196 |
+
0.4037521779537201
|
197 |
+
>>> ccip_difference('ccip/2.jpg', 'ccip/6.jpg')
|
198 |
+
0.4371533691883087
|
199 |
+
>>> ccip_difference('ccip/2.jpg', 'ccip/7.jpg')
|
200 |
+
0.40748104453086853
|
201 |
+
>>> ccip_difference('ccip/6.jpg', 'ccip/7.jpg')
|
202 |
+
0.392294704914093
|
203 |
+
"""
|
204 |
+
return ccip_batch_differences([x, y], size, model)[0, 1].item()
|
205 |
+
|
206 |
+
|
207 |
+
def ccip_batch_differences(images: List[_FeatureOrImage],
|
208 |
+
size: int = 384, model: str = _DEFAULT_MODEL_NAMES) -> np.ndarray:
|
209 |
+
"""
|
210 |
+
Calculates the pairwise differences between a given list of images or feature vectors representing anime characters.
|
211 |
+
|
212 |
+
:param images: The list of images or feature vectors representing anime characters.
|
213 |
+
:type images: List[Union[ImageTyping, np.ndarray]]
|
214 |
+
|
215 |
+
:param size: The size of the input image to be used for feature extraction. (default: ``384``)
|
216 |
+
:type size: int
|
217 |
+
|
218 |
+
:param model: The name of the model to use for feature extraction. (default: ``ccip-caformer-24-randaug-pruned``)
|
219 |
+
The available model names are: ``ccip-caformer-24-randaug-pruned``,
|
220 |
+
``ccip-caformer-6-randaug-pruned_fp32``, ``ccip-caformer-5_fp32``.
|
221 |
+
:type model: str
|
222 |
+
|
223 |
+
:return: The matrix of pairwise differences between the given images or feature vectors.
|
224 |
+
:rtype: np.ndarray
|
225 |
+
|
226 |
+
Examples::
|
227 |
+
>>> from imgutils.metrics import ccip_batch_differences
|
228 |
+
>>>
|
229 |
+
>>> ccip_batch_differences(['ccip/1.jpg', 'ccip/2.jpg', 'ccip/6.jpg', 'ccip/7.jpg'])
|
230 |
+
array([[6.5350548e-08, 1.6583106e-01, 4.2947042e-01, 4.0375218e-01],
|
231 |
+
[1.6583106e-01, 9.8025822e-08, 4.3715334e-01, 4.0748104e-01],
|
232 |
+
[4.2947042e-01, 4.3715334e-01, 3.2675274e-08, 3.9229470e-01],
|
233 |
+
[4.0375218e-01, 4.0748104e-01, 3.9229470e-01, 6.5350548e-08]],
|
234 |
+
dtype=float32)
|
235 |
+
"""
|
236 |
+
input_ = np.stack([_p_feature(img, size, model) for img in images]).astype(np.float32)
|
237 |
+
output, = _open_metric_model(model).run(['output'], {'input': input_})
|
238 |
+
return output
|
ccip_app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from ccip import _VALID_MODEL_NAMES, _DEFAULT_MODEL_NAMES, ccip_difference, ccip_default_threshold
|
6 |
+
|
7 |
+
|
8 |
+
def _compare(imagex, imagey, model_name):
|
9 |
+
threshold = ccip_default_threshold(model_name)
|
10 |
+
diff = ccip_difference(imagex, imagey)
|
11 |
+
|
12 |
+
return diff, 'Same' if diff <= threshold else 'Not Same'
|
13 |
+
|
14 |
+
|
15 |
+
if __name__ == '__main__':
|
16 |
+
with gr.Blocks() as demo:
|
17 |
+
with gr.Row():
|
18 |
+
with gr.Column():
|
19 |
+
with gr.Row():
|
20 |
+
with gr.Column():
|
21 |
+
gr_input_x = gr.Image(type='pil', label='Image X')
|
22 |
+
with gr.Column():
|
23 |
+
gr_input_y = gr.Image(type='pil', label='Image Y')
|
24 |
+
with gr.Row():
|
25 |
+
gr_model_name = gr.Dropdown(_VALID_MODEL_NAMES, value=_DEFAULT_MODEL_NAMES, label='Model')
|
26 |
+
|
27 |
+
gr_button = gr.Button(value='Compare', variant='primary')
|
28 |
+
|
29 |
+
with gr.Column():
|
30 |
+
with gr.Row():
|
31 |
+
gr_diff = gr.Number(value=0.0, label='Difference')
|
32 |
+
with gr.Row():
|
33 |
+
gr_prediction = gr.Text(value='', label='Prediction')
|
34 |
+
|
35 |
+
gr_button.click(
|
36 |
+
_compare,
|
37 |
+
inputs=[gr_input_x, gr_input_y, gr_model_name],
|
38 |
+
outputs=[gr_diff, gr_prediction],
|
39 |
+
)
|
40 |
+
|
41 |
+
demo.queue(os.cpu_count()).launch(share = True)
|
requirements.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#gradio==3.41.2
|
2 |
+
gradio==5.10.0
|
3 |
+
numpy
|
4 |
+
pillow
|
5 |
+
huggingface_hub
|
6 |
+
scikit-image
|
7 |
+
pandas
|
8 |
+
opencv-python>=4.6.0
|
9 |
+
hbutils>=0.9.0
|
10 |
+
dghs-imgutils[gpu]>=0.2.3
|
11 |
+
#### pip install onnxruntime-gpu==1.17.0 --index-url=https://pkgs.dev.azure.com/onnxruntime/onnxruntime/_packaging/onnxruntime-cuda-12/pypi/simple
|
12 |
+
onnxruntime-gpu==1.17.0
|
13 |
+
#dghs-imgutils>=0.2.3
|
14 |
+
#onnxruntime-cpu
|
15 |
+
httpx
|
16 |
+
|
17 |
+
datasets
|
/347/217/255/345/260/274/347/211/271.png
ADDED
/350/212/255/350/212/255/346/213/211.png
ADDED
/350/241/214/347/247/213.png
ADDED