File size: 23,244 Bytes
0a9bdfb
 
 
 
 
 
 
 
da162f8
0a9bdfb
 
 
ab6505a
0a9bdfb
9852d5d
c992a5e
9852d5d
0a9bdfb
 
 
 
 
 
 
 
3c0f460
 
 
0a9bdfb
 
3c0f460
 
0a9bdfb
 
 
 
 
ab6505a
64c7f5d
c30ec73
 
0a9bdfb
c992a5e
0a9bdfb
 
 
 
 
 
 
 
da162f8
0a9bdfb
ab6505a
2d1f579
 
 
0a9bdfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f6f578
0a9bdfb
 
1f6f578
0a9bdfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f6f578
0a9bdfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f6f578
0a9bdfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da162f8
 
0a9bdfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c992a5e
1f6f578
 
 
 
 
 
 
 
 
 
 
0a9bdfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
import numpy as np
import torch
import copy
import cv2
import os
import moviepy.video.io.ImageSequenceClip
from datetime import datetime
import gc
import gradio as gr

from pose.script.dwpose import DWposeDetector, draw_pose
from pose.script.util import size_calculate, warpAffine_kps
from downloading_weights import download_models

# ZeroGPU
#import spaces


'''
    Detect dwpose from img, then align it by scale parameters
    img: frame from the pose video
    detector: DWpose
    scales: scale parameters
'''
class PoseAlignmentInference:
    def __init__(self,
                 model_dir,
                 output_dir):
        self.detector = None
        self.model_paths = {
            "det_ckpt": os.path.join(model_dir, "dwpose", "yolox_l_8x8_300e_coco.pth"),
            "pose_ckpt": os.path.join(model_dir, "dwpose", "dw-ll_ucoco_384.pth")
        }
        self.config_paths = {
            "pose_config": os.path.join("pose", "config", "dwpose-l_384x288.py"),
            "det_config": os.path.join("pose", "config", "yolox_l_8xb8-300e_coco.py"),
        }
        self.model_dir = model_dir
        self.output_dir = os.path.join(output_dir, "pose_alignment")
        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)

    #@spaces.GPU(duration=120)
    def align_pose(
        self,
        vidfn: str,
        imgfn_refer: str,
        detect_resolution: int,
        image_resolution: int,
        align_frame: int,
        max_frame: int,
        gradio_progress=gr.Progress()
    ):
        download_models(model_dir=self.model_dir)
        output_filename = "pose_temp"
        outfn=os.path.abspath(os.path.join(self.output_dir, f'{output_filename}_demo.mp4'))
        outfn_align_pose_video=os.path.abspath(os.path.join(self.output_dir, f'{output_filename}.mp4'))

        video = cv2.VideoCapture(vidfn)
        width= video.get(cv2.CAP_PROP_FRAME_WIDTH)
        height= video.get(cv2.CAP_PROP_FRAME_HEIGHT)

        total_frame= video.get(cv2.CAP_PROP_FRAME_COUNT)
        fps= video.get(cv2.CAP_PROP_FPS)

        print("height:", height)
        print("width:", width)
        print("fps:", fps)

        H_in, W_in  = height, width
        H_out, W_out = size_calculate(H_in,W_in, detect_resolution)
        H_out, W_out = size_calculate(H_out,W_out, image_resolution)

        self.init_model()

        refer_img = cv2.imread(imgfn_refer)
        output_refer, pose_refer = self.detector(refer_img,detect_resolution=detect_resolution, image_resolution=image_resolution, output_type='cv2',return_pose_dict=True)
        body_ref_img  = pose_refer['bodies']['candidate']
        hands_ref_img = pose_refer['hands']
        faces_ref_img = pose_refer['faces']
        output_refer = cv2.cvtColor(output_refer, cv2.COLOR_RGB2BGR)


        skip_frames = align_frame
        max_frame = max_frame
        pose_list, video_frame_buffer, video_pose_buffer = [], [], []


        cap = cv2.VideoCapture('2.mp4')     # 读取视频
        while cap.isOpened():               # 当视频被打开时:
            ret, frame = cap.read()         # 读取视频,读取到的某一帧存储到frame,若是读取成功,ret为True,反之为False
            if ret:                         # 若是读取成功
                cv2.imshow('frame', frame)  # 显示读取到的这一帧画面
                key = cv2.waitKey(25)       # 等待一段时间,并且检测键盘输入
                if key == ord('q'):         # 若是键盘输入'q',则退出,释放视频
                    cap.release()           # 释放视频
                    break
            else:
                cap.release()
        cv2.destroyAllWindows()             # 关闭所有窗口


        for i in range(max_frame):
            ret, img = video.read()
            if img is None:
                break
            else:
                if i < skip_frames:
                    continue
                video_frame_buffer.append(img)

            # estimate scale parameters by the 1st frame in the video
            if i==skip_frames:
                output_1st_img, pose_1st_img = self.detector(img, detect_resolution, image_resolution, output_type='cv2', return_pose_dict=True)
                body_1st_img  = pose_1st_img['bodies']['candidate']
                hands_1st_img = pose_1st_img['hands']
                faces_1st_img = pose_1st_img['faces']

                '''
                计算逻辑:
                1. 先把 ref 和 pose 的高 resize 到一样,且都保持原来的长宽比。
                2. 用点在图中的实际坐标来计算。
                3. 实际计算中,把h的坐标归一化到 [0, 1],  w为[0, W/H]
                4. 由于 dwpose 的输出本来就是归一化的坐标,所以h不需要变,w要乘W/H
                注意:dwpose 输出是 (w, h)
                '''

                # h不变,w缩放到原比例
                ref_H, ref_W = refer_img.shape[0], refer_img.shape[1]
                ref_ratio = ref_W / ref_H
                body_ref_img[:, 0]  = body_ref_img[:, 0] * ref_ratio
                hands_ref_img[:, :, 0] = hands_ref_img[:, :, 0] * ref_ratio
                faces_ref_img[:, :, 0] = faces_ref_img[:, :, 0] * ref_ratio

                video_ratio = width / height
                body_1st_img[:, 0]  = body_1st_img[:, 0] * video_ratio
                hands_1st_img[:, :, 0] = hands_1st_img[:, :, 0] * video_ratio
                faces_1st_img[:, :, 0] = faces_1st_img[:, :, 0] * video_ratio

                # scale
                align_args = dict()

                dist_1st_img = np.linalg.norm(body_1st_img[0]-body_1st_img[1])   # 0.078
                dist_ref_img = np.linalg.norm(body_ref_img[0]-body_ref_img[1])   # 0.106
                align_args["scale_neck"] = dist_ref_img / dist_1st_img  # align / pose = ref / 1st

                dist_1st_img = np.linalg.norm(body_1st_img[16]-body_1st_img[17])
                dist_ref_img = np.linalg.norm(body_ref_img[16]-body_ref_img[17])
                align_args["scale_face"] = dist_ref_img / dist_1st_img

                dist_1st_img = np.linalg.norm(body_1st_img[2]-body_1st_img[5])  # 0.112
                dist_ref_img = np.linalg.norm(body_ref_img[2]-body_ref_img[5])  # 0.174
                align_args["scale_shoulder"] = dist_ref_img / dist_1st_img

                dist_1st_img = np.linalg.norm(body_1st_img[2]-body_1st_img[3])  # 0.895
                dist_ref_img = np.linalg.norm(body_ref_img[2]-body_ref_img[3])  # 0.134
                s1 = dist_ref_img / dist_1st_img
                dist_1st_img = np.linalg.norm(body_1st_img[5]-body_1st_img[6])
                dist_ref_img = np.linalg.norm(body_ref_img[5]-body_ref_img[6])
                s2 = dist_ref_img / dist_1st_img
                align_args["scale_arm_upper"] = (s1+s2)/2 # 1.548

                dist_1st_img = np.linalg.norm(body_1st_img[3]-body_1st_img[4])
                dist_ref_img = np.linalg.norm(body_ref_img[3]-body_ref_img[4])
                s1 = dist_ref_img / dist_1st_img
                dist_1st_img = np.linalg.norm(body_1st_img[6]-body_1st_img[7])
                dist_ref_img = np.linalg.norm(body_ref_img[6]-body_ref_img[7])
                s2 = dist_ref_img / dist_1st_img
                align_args["scale_arm_lower"] = (s1+s2)/2

                # hand
                dist_1st_img = np.zeros(10)
                dist_ref_img = np.zeros(10)

                dist_1st_img[0] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,1])
                dist_1st_img[1] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,5])
                dist_1st_img[2] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,9])
                dist_1st_img[3] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,13])
                dist_1st_img[4] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,17])
                dist_1st_img[5] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,1])
                dist_1st_img[6] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,5])
                dist_1st_img[7] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,9])
                dist_1st_img[8] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,13])
                dist_1st_img[9] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,17])

                dist_ref_img[0] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,1])
                dist_ref_img[1] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,5])
                dist_ref_img[2] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,9])
                dist_ref_img[3] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,13])
                dist_ref_img[4] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,17])
                dist_ref_img[5] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,1])
                dist_ref_img[6] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,5])
                dist_ref_img[7] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,9])
                dist_ref_img[8] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,13])
                dist_ref_img[9] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,17])

                ratio = 0
                count = 0
                for i in range (10):
                    if dist_1st_img[i] != 0:
                        ratio = ratio + dist_ref_img[i]/dist_1st_img[i]
                        count = count + 1
                if count!=0:
                    align_args["scale_hand"] = (ratio/count+align_args["scale_arm_upper"]+align_args["scale_arm_lower"])/3
                else:
                    align_args["scale_hand"] = (align_args["scale_arm_upper"]+align_args["scale_arm_lower"])/2

                # body
                dist_1st_img = np.linalg.norm(body_1st_img[1] - (body_1st_img[8] + body_1st_img[11])/2 )
                dist_ref_img = np.linalg.norm(body_ref_img[1] - (body_ref_img[8] + body_ref_img[11])/2 )
                align_args["scale_body_len"]=dist_ref_img / dist_1st_img

                dist_1st_img = np.linalg.norm(body_1st_img[8]-body_1st_img[9])
                dist_ref_img = np.linalg.norm(body_ref_img[8]-body_ref_img[9])
                s1 = dist_ref_img / dist_1st_img
                dist_1st_img = np.linalg.norm(body_1st_img[11]-body_1st_img[12])
                dist_ref_img = np.linalg.norm(body_ref_img[11]-body_ref_img[12])
                s2 = dist_ref_img / dist_1st_img
                align_args["scale_leg_upper"] = (s1+s2)/2

                dist_1st_img = np.linalg.norm(body_1st_img[9]-body_1st_img[10])
                dist_ref_img = np.linalg.norm(body_ref_img[9]-body_ref_img[10])
                s1 = dist_ref_img / dist_1st_img
                dist_1st_img = np.linalg.norm(body_1st_img[12]-body_1st_img[13])
                dist_ref_img = np.linalg.norm(body_ref_img[12]-body_ref_img[13])
                s2 = dist_ref_img / dist_1st_img
                align_args["scale_leg_lower"] = (s1+s2)/2

                ####################
                ####################
                # need adjust nan
                for k,v in align_args.items():
                    if np.isnan(v):
                        align_args[k]=1

                # centre offset (the offset of key point 1)
                offset = body_ref_img[1] - body_1st_img[1]


            # pose align
            pose_img, pose_ori = self.detector(img, detect_resolution, image_resolution, output_type='cv2', return_pose_dict=True)
            video_pose_buffer.append(pose_img)
            pose_align = self.align_img(img, pose_ori, align_args, detect_resolution, image_resolution)


            # add centre offset
            pose = pose_align
            pose['bodies']['candidate'] = pose['bodies']['candidate'] + offset
            pose['hands'] = pose['hands'] + offset
            pose['faces'] = pose['faces'] + offset


            # h不变,w从绝对坐标缩放回0-1 注意这里要回到ref的坐标系
            pose['bodies']['candidate'][:, 0] = pose['bodies']['candidate'][:, 0] / ref_ratio
            pose['hands'][:, :, 0] = pose['hands'][:, :, 0] / ref_ratio
            pose['faces'][:, :, 0] = pose['faces'][:, :, 0] / ref_ratio
            pose_list.append(pose)

        # stack
        body_list  = [pose['bodies']['candidate'][:18] for pose in pose_list]
        body_list_subset = [pose['bodies']['subset'][:1] for pose in pose_list]
        hands_list = [pose['hands'][:2] for pose in pose_list]
        faces_list = [pose['faces'][:1] for pose in pose_list]

        body_seq         = np.stack(body_list       , axis=0)
        body_seq_subset  = np.stack(body_list_subset, axis=0)
        hands_seq        = np.stack(hands_list      , axis=0)
        faces_seq        = np.stack(faces_list      , axis=0)


        # concatenate and paint results
        H = 768 # paint height
        W1 = int((H/ref_H * ref_W)//2 *2)
        W2 = int((H/height * width)//2 *2)
        result_demo = [] # = Writer(args, None, H, 3*W1+2*W2, outfn, fps)
        result_pose_only = [] # Writer(args, None, H, W1, args.outfn_align_pose_video, fps)
        for i in range(len(body_seq)):
            gradio_progress(i/len(body_seq), "Aligning Pose.... After this, go to Step 2.")

            pose_t={}
            pose_t["bodies"]={}
            pose_t["bodies"]["candidate"]=body_seq[i]
            pose_t["bodies"]["subset"]=body_seq_subset[i]
            pose_t["hands"]=hands_seq[i]
            pose_t["faces"]=faces_seq[i]

            ref_img = cv2.cvtColor(refer_img, cv2.COLOR_RGB2BGR)
            ref_img = cv2.resize(ref_img, (W1, H))
            ref_pose= cv2.resize(output_refer, (W1, H))

            output_transformed = draw_pose(
                pose_t,
                int(H_in*1024/W_in),
                1024,
                draw_face=False,
                )
            output_transformed = cv2.cvtColor(output_transformed, cv2.COLOR_BGR2RGB)
            output_transformed = cv2.resize(output_transformed, (W1, H))

            video_frame = cv2.resize(video_frame_buffer[i], (W2, H))
            video_pose  = cv2.resize(video_pose_buffer[i], (W2, H))

            res = np.concatenate([ref_img, ref_pose, output_transformed, video_frame, video_pose], axis=1)
            result_demo.append(res)
            result_pose_only.append(output_transformed)

        print(f"pose_list len: {len(pose_list)}")
        clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(result_demo, fps=fps)
        clip.write_videofile(outfn, fps=fps)
        clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(result_pose_only, fps=fps)
        clip.write_videofile(outfn_align_pose_video, fps=fps)
        print('pose align done')
        return outfn_align_pose_video, outfn

    #@spaces.GPU(duration=120)
    def init_model(self):
        if self.detector is None:
            device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
            self.detector = DWposeDetector(
                det_config=self.config_paths["det_config"],
                det_ckpt=self.model_paths["det_ckpt"],
                pose_config=self.config_paths["pose_config"],
                pose_ckpt=self.model_paths["pose_ckpt"],
                keypoints_only=False
            ).to(device)

    def release_vram(self):
        if self.detector is not None:
            del self.detector
            self.detector = None
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            gc.collect()

    @staticmethod
    def align_img(img, pose_ori, scales, detect_resolution, image_resolution):

        body_pose = copy.deepcopy(pose_ori['bodies']['candidate'])
        hands = copy.deepcopy(pose_ori['hands'])
        faces = copy.deepcopy(pose_ori['faces'])

        '''
        计算逻辑:
        0. 该函数内进行绝对变换,始终保持人体中心点 body_pose[1] 不变
        1. 先把 ref 和 pose 的高 resize 到一样,且都保持原来的长宽比。
        2. 用点在图中的实际坐标来计算。
        3. 实际计算中,把h的坐标归一化到 [0, 1],  w为[0, W/H]
        4. 由于 dwpose 的输出本来就是归一化的坐标,所以h不需要变,w要乘W/H
        注意:dwpose 输出是 (w, h)
        '''

        # h不变,w缩放到原比例
        H_in, W_in, C_in = img.shape
        video_ratio = W_in / H_in
        body_pose[:, 0] = body_pose[:, 0] * video_ratio
        hands[:, :, 0] = hands[:, :, 0] * video_ratio
        faces[:, :, 0] = faces[:, :, 0] * video_ratio

        # scales of 10 body parts
        scale_neck = scales["scale_neck"]
        scale_face = scales["scale_face"]
        scale_shoulder = scales["scale_shoulder"]
        scale_arm_upper = scales["scale_arm_upper"]
        scale_arm_lower = scales["scale_arm_lower"]
        scale_hand = scales["scale_hand"]
        scale_body_len = scales["scale_body_len"]
        scale_leg_upper = scales["scale_leg_upper"]
        scale_leg_lower = scales["scale_leg_lower"]

        scale_sum = 0
        count = 0
        scale_list = [scale_neck, scale_face, scale_shoulder, scale_arm_upper, scale_arm_lower, scale_hand,
                      scale_body_len, scale_leg_upper, scale_leg_lower]
        for i in range(len(scale_list)):
            if not np.isinf(scale_list[i]):
                scale_sum = scale_sum + scale_list[i]
                count = count + 1
        for i in range(len(scale_list)):
            if np.isinf(scale_list[i]):
                scale_list[i] = scale_sum / count

        # offsets of each part
        offset = dict()
        offset["14_15_16_17_to_0"] = body_pose[[14, 15, 16, 17], :] - body_pose[[0], :]
        offset["3_to_2"] = body_pose[[3], :] - body_pose[[2], :]
        offset["4_to_3"] = body_pose[[4], :] - body_pose[[3], :]
        offset["6_to_5"] = body_pose[[6], :] - body_pose[[5], :]
        offset["7_to_6"] = body_pose[[7], :] - body_pose[[6], :]
        offset["9_to_8"] = body_pose[[9], :] - body_pose[[8], :]
        offset["10_to_9"] = body_pose[[10], :] - body_pose[[9], :]
        offset["12_to_11"] = body_pose[[12], :] - body_pose[[11], :]
        offset["13_to_12"] = body_pose[[13], :] - body_pose[[12], :]
        offset["hand_left_to_4"] = hands[1, :, :] - body_pose[[4], :]
        offset["hand_right_to_7"] = hands[0, :, :] - body_pose[[7], :]

        # neck
        c_ = body_pose[1]
        cx = c_[0]
        cy = c_[1]
        M = cv2.getRotationMatrix2D((cx, cy), 0, scale_neck)

        neck = body_pose[[0], :]
        neck = warpAffine_kps(neck, M)
        body_pose[[0], :] = neck

        # body_pose_up_shoulder
        c_ = body_pose[0]
        cx = c_[0]
        cy = c_[1]
        M = cv2.getRotationMatrix2D((cx, cy), 0, scale_face)

        body_pose_up_shoulder = offset["14_15_16_17_to_0"] + body_pose[[0], :]
        body_pose_up_shoulder = warpAffine_kps(body_pose_up_shoulder, M)
        body_pose[[14, 15, 16, 17], :] = body_pose_up_shoulder

        # shoulder
        c_ = body_pose[1]
        cx = c_[0]
        cy = c_[1]
        M = cv2.getRotationMatrix2D((cx, cy), 0, scale_shoulder)

        body_pose_shoulder = body_pose[[2, 5], :]
        body_pose_shoulder = warpAffine_kps(body_pose_shoulder, M)
        body_pose[[2, 5], :] = body_pose_shoulder

        # arm upper left
        c_ = body_pose[2]
        cx = c_[0]
        cy = c_[1]
        M = cv2.getRotationMatrix2D((cx, cy), 0, scale_arm_upper)

        elbow = offset["3_to_2"] + body_pose[[2], :]
        elbow = warpAffine_kps(elbow, M)
        body_pose[[3], :] = elbow

        # arm lower left
        c_ = body_pose[3]
        cx = c_[0]
        cy = c_[1]
        M = cv2.getRotationMatrix2D((cx, cy), 0, scale_arm_lower)

        wrist = offset["4_to_3"] + body_pose[[3], :]
        wrist = warpAffine_kps(wrist, M)
        body_pose[[4], :] = wrist

        # hand left
        c_ = body_pose[4]
        cx = c_[0]
        cy = c_[1]
        M = cv2.getRotationMatrix2D((cx, cy), 0, scale_hand)

        hand = offset["hand_left_to_4"] + body_pose[[4], :]
        hand = warpAffine_kps(hand, M)
        hands[1, :, :] = hand

        # arm upper right
        c_ = body_pose[5]
        cx = c_[0]
        cy = c_[1]
        M = cv2.getRotationMatrix2D((cx, cy), 0, scale_arm_upper)

        elbow = offset["6_to_5"] + body_pose[[5], :]
        elbow = warpAffine_kps(elbow, M)
        body_pose[[6], :] = elbow

        # arm lower right
        c_ = body_pose[6]
        cx = c_[0]
        cy = c_[1]
        M = cv2.getRotationMatrix2D((cx, cy), 0, scale_arm_lower)

        wrist = offset["7_to_6"] + body_pose[[6], :]
        wrist = warpAffine_kps(wrist, M)
        body_pose[[7], :] = wrist

        # hand right
        c_ = body_pose[7]
        cx = c_[0]
        cy = c_[1]
        M = cv2.getRotationMatrix2D((cx, cy), 0, scale_hand)

        hand = offset["hand_right_to_7"] + body_pose[[7], :]
        hand = warpAffine_kps(hand, M)
        hands[0, :, :] = hand

        # body len
        c_ = body_pose[1]
        cx = c_[0]
        cy = c_[1]
        M = cv2.getRotationMatrix2D((cx, cy), 0, scale_body_len)

        body_len = body_pose[[8, 11], :]
        body_len = warpAffine_kps(body_len, M)
        body_pose[[8, 11], :] = body_len

        # leg upper left
        c_ = body_pose[8]
        cx = c_[0]
        cy = c_[1]
        M = cv2.getRotationMatrix2D((cx, cy), 0, scale_leg_upper)

        knee = offset["9_to_8"] + body_pose[[8], :]
        knee = warpAffine_kps(knee, M)
        body_pose[[9], :] = knee

        # leg lower left
        c_ = body_pose[9]
        cx = c_[0]
        cy = c_[1]
        M = cv2.getRotationMatrix2D((cx, cy), 0, scale_leg_lower)

        ankle = offset["10_to_9"] + body_pose[[9], :]
        ankle = warpAffine_kps(ankle, M)
        body_pose[[10], :] = ankle

        # leg upper right
        c_ = body_pose[11]
        cx = c_[0]
        cy = c_[1]
        M = cv2.getRotationMatrix2D((cx, cy), 0, scale_leg_upper)

        knee = offset["12_to_11"] + body_pose[[11], :]
        knee = warpAffine_kps(knee, M)
        body_pose[[12], :] = knee

        # leg lower right
        c_ = body_pose[12]
        cx = c_[0]
        cy = c_[1]
        M = cv2.getRotationMatrix2D((cx, cy), 0, scale_leg_lower)

        ankle = offset["13_to_12"] + body_pose[[12], :]
        ankle = warpAffine_kps(ankle, M)
        body_pose[[13], :] = ankle

        # none part
        body_pose_none = pose_ori['bodies']['candidate'] == -1.
        hands_none = pose_ori['hands'] == -1.
        faces_none = pose_ori['faces'] == -1.

        body_pose[body_pose_none] = -1.
        hands[hands_none] = -1.
        nan = float('nan')
        if len(hands[np.isnan(hands)]) > 0:
            print('nan')
        faces[faces_none] = -1.

        # last check nan -> -1.
        body_pose = np.nan_to_num(body_pose, nan=-1.)
        hands = np.nan_to_num(hands, nan=-1.)
        faces = np.nan_to_num(faces, nan=-1.)

        # return
        pose_align = copy.deepcopy(pose_ori)
        pose_align['bodies']['candidate'] = body_pose
        pose_align['hands'] = hands
        pose_align['faces'] = faces

        return pose_align