Spaces:
Running
Running
import math | |
import numpy as np | |
import cv2 | |
eps = 0.01 | |
def smart_width(d): | |
if d<5: | |
return 1 | |
elif d<10: | |
return 2 | |
elif d<20: | |
return 3 | |
elif d<40: | |
return 4 | |
elif d<80: | |
return 5 | |
elif d<160: | |
return 6 | |
elif d<320: | |
return 7 | |
else: | |
return 8 | |
def draw_bodypose(canvas, candidate, subset): | |
H, W, C = canvas.shape | |
candidate = np.array(candidate) | |
subset = np.array(subset) | |
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \ | |
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \ | |
[1, 16], [16, 18], [3, 17], [6, 18]] | |
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ | |
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \ | |
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] | |
for i in range(17): | |
for n in range(len(subset)): | |
index = subset[n][np.array(limbSeq[i]) - 1] | |
if -1 in index: | |
continue | |
Y = candidate[index.astype(int), 0] * float(W) | |
X = candidate[index.astype(int), 1] * float(H) | |
mX = np.mean(X) | |
mY = np.mean(Y) | |
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5 | |
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) | |
width = smart_width(length) | |
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), width), int(angle), 0, 360, 1) | |
cv2.fillConvexPoly(canvas, polygon, colors[i]) | |
canvas = (canvas * 0.6).astype(np.uint8) | |
for i in range(18): | |
for n in range(len(subset)): | |
index = int(subset[n][i]) | |
if index == -1: | |
continue | |
x, y = candidate[index][0:2] | |
x = int(x * W) | |
y = int(y * H) | |
radius = 4 | |
cv2.circle(canvas, (int(x), int(y)), radius, colors[i], thickness=-1) | |
return canvas | |
def draw_handpose(canvas, all_hand_peaks): | |
import matplotlib | |
H, W, C = canvas.shape | |
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \ | |
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]] | |
# (person_number*2, 21, 2) | |
for i in range(len(all_hand_peaks)): | |
peaks = all_hand_peaks[i] | |
peaks = np.array(peaks) | |
for ie, e in enumerate(edges): | |
x1, y1 = peaks[e[0]] | |
x2, y2 = peaks[e[1]] | |
x1 = int(x1 * W) | |
y1 = int(y1 * H) | |
x2 = int(x2 * W) | |
y2 = int(y2 * H) | |
if x1 > eps and y1 > eps and x2 > eps and y2 > eps: | |
length = ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5 | |
width = smart_width(length) | |
cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255, thickness=width) | |
for _, keyponit in enumerate(peaks): | |
x, y = keyponit | |
x = int(x * W) | |
y = int(y * H) | |
if x > eps and y > eps: | |
radius = 3 | |
cv2.circle(canvas, (x, y), radius, (0, 0, 255), thickness=-1) | |
return canvas | |
def draw_facepose(canvas, all_lmks): | |
H, W, C = canvas.shape | |
for lmks in all_lmks: | |
lmks = np.array(lmks) | |
for lmk in lmks: | |
x, y = lmk | |
x = int(x * W) | |
y = int(y * H) | |
if x > eps and y > eps: | |
radius = 3 | |
cv2.circle(canvas, (x, y), radius, (255, 255, 255), thickness=-1) | |
return canvas | |
# Calculate the resolution | |
def size_calculate(h, w, resolution): | |
H = float(h) | |
W = float(w) | |
# resize the short edge to the resolution | |
k = float(resolution) / min(H, W) # short edge | |
H *= k | |
W *= k | |
# resize to the nearest integer multiple of 64 | |
H = int(np.round(H / 64.0)) * 64 | |
W = int(np.round(W / 64.0)) * 64 | |
return H, W | |
def warpAffine_kps(kps, M): | |
a = M[:,:2] | |
t = M[:,2] | |
kps = np.dot(kps, a.T) + t | |
return kps | |