Spaces:
Running
Running
# Copyright (c) OpenMMLab. All rights reserved. | |
import os | |
import numpy as np | |
import warnings | |
try: | |
import mmcv | |
except ImportError: | |
warnings.warn( | |
"The module 'mmcv' is not installed. The package will have limited functionality. Please install it using the command: mim install 'mmcv>=2.0.1'" | |
) | |
try: | |
from mmpose.apis import inference_topdown | |
from mmpose.apis import init_model as init_pose_estimator | |
from mmpose.evaluation.functional import nms | |
from mmpose.utils import adapt_mmdet_pipeline | |
from mmpose.structures import merge_data_samples | |
except ImportError: | |
warnings.warn( | |
"The module 'mmpose' is not installed. The package will have limited functionality. Please install it using the command: mim install 'mmpose>=1.1.0'" | |
) | |
try: | |
from mmdet.apis import inference_detector, init_detector | |
except ImportError: | |
warnings.warn( | |
"The module 'mmdet' is not installed. The package will have limited functionality. Please install it using the command: mim install 'mmdet>=3.1.0'" | |
) | |
class Wholebody: | |
def __init__(self, | |
det_config=None, det_ckpt=None, | |
pose_config=None, pose_ckpt=None, | |
device="cpu"): | |
if det_config is None: | |
det_config = os.path.join(os.path.dirname(__file__), "yolox_config/yolox_l_8xb8-300e_coco.py") | |
if pose_config is None: | |
pose_config = os.path.join(os.path.dirname(__file__), "dwpose_config/dwpose-l_384x288.py") | |
if det_ckpt is None: | |
det_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth' | |
if pose_ckpt is None: | |
pose_ckpt = "https://huggingface.co/wanghaofan/dw-ll_ucoco_384/resolve/main/dw-ll_ucoco_384.pth" | |
# build detector | |
self.detector = init_detector(det_config, det_ckpt, device=device) | |
self.detector.cfg = adapt_mmdet_pipeline(self.detector.cfg) | |
# build pose estimator | |
self.pose_estimator = init_pose_estimator( | |
pose_config, | |
pose_ckpt, | |
device=device) | |
def to(self, device): | |
self.detector.to(device) | |
self.pose_estimator.to(device) | |
return self | |
def __call__(self, oriImg): | |
# predict bbox | |
det_result = inference_detector(self.detector, oriImg) | |
pred_instance = det_result.pred_instances.cpu().numpy() | |
bboxes = np.concatenate( | |
(pred_instance.bboxes, pred_instance.scores[:, None]), axis=1) | |
bboxes = bboxes[np.logical_and(pred_instance.labels == 0, | |
pred_instance.scores > 0.5)] | |
# set NMS threshold | |
bboxes = bboxes[nms(bboxes, 0.7), :4] | |
# predict keypoints | |
if len(bboxes) == 0: | |
pose_results = inference_topdown(self.pose_estimator, oriImg) | |
else: | |
pose_results = inference_topdown(self.pose_estimator, oriImg, bboxes) | |
preds = merge_data_samples(pose_results) | |
preds = preds.pred_instances | |
# preds = pose_results[0].pred_instances | |
keypoints = preds.get('transformed_keypoints', | |
preds.keypoints) | |
if 'keypoint_scores' in preds: | |
scores = preds.keypoint_scores | |
else: | |
scores = np.ones(keypoints.shape[:-1]) | |
if 'keypoints_visible' in preds: | |
visible = preds.keypoints_visible | |
else: | |
visible = np.ones(keypoints.shape[:-1]) | |
keypoints_info = np.concatenate( | |
(keypoints, scores[..., None], visible[..., None]), | |
axis=-1) | |
# compute neck joint | |
neck = np.mean(keypoints_info[:, [5, 6]], axis=1) | |
# neck score when visualizing pred | |
neck[:, 2:4] = np.logical_and( | |
keypoints_info[:, 5, 2:4] > 0.3, | |
keypoints_info[:, 6, 2:4] > 0.3).astype(int) | |
new_keypoints_info = np.insert( | |
keypoints_info, 17, neck, axis=1) | |
mmpose_idx = [ | |
17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3 | |
] | |
openpose_idx = [ | |
1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17 | |
] | |
new_keypoints_info[:, openpose_idx] = \ | |
new_keypoints_info[:, mmpose_idx] | |
keypoints_info = new_keypoints_info | |
keypoints, scores, visible = keypoints_info[ | |
..., :2], keypoints_info[..., 2], keypoints_info[..., 3] | |
return keypoints, scores | |