Update app.py
Browse files
app.py
CHANGED
@@ -3,33 +3,35 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
-
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
|
|
|
|
11 |
# load speech translation checkpoint
|
12 |
-
asr_pipe = pipeline(
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
processor =
|
16 |
-
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
18 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
-
|
20 |
-
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
23 |
|
24 |
def translate(audio):
|
25 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
29 |
def synthesise(text):
|
30 |
-
inputs = processor(text
|
31 |
-
speech = model.
|
32 |
-
return speech
|
33 |
|
34 |
|
35 |
def speech_to_speech_translation(audio):
|
@@ -69,4 +71,4 @@ file_translate = gr.Interface(
|
|
69 |
with demo:
|
70 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
71 |
|
72 |
-
demo.launch()
|
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
+
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, WhisperProcessor, BarkModel, BarkProcessor
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
+
asr_model_id = "openai/whisper-base"
|
12 |
+
asr_processor = WhisperProcessor.from_pretrained(asr_model_id, language="es", task="transcribe")
|
13 |
# load speech translation checkpoint
|
14 |
+
asr_pipe = pipeline(
|
15 |
+
"automatic-speech-recognition",
|
16 |
+
model=asr_model_id,
|
17 |
+
feature_extractor=asr_processor.feature_extractor,
|
18 |
+
tokenizer=asr_processor.tokenizer,
|
19 |
+
device=device)
|
20 |
|
21 |
# load text-to-speech checkpoint and speaker embeddings
|
22 |
+
processor = BarkProcessor.from_pretrained("suno/bark-small")
|
23 |
+
model = BarkModel.from_pretrained("suno/bark-small").to(device)
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
|
26 |
def translate(audio):
|
27 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "es", "forced_decoder_ids": asr_processor.tokenizer.get_decoder_prompt_ids(language="es", task="translate")})
|
28 |
return outputs["text"]
|
29 |
|
30 |
|
31 |
def synthesise(text):
|
32 |
+
inputs = processor(text, voice_preset="v2/es_speaker_3")
|
33 |
+
speech = model.generate(**inputs).cpu().numpy()
|
34 |
+
return speech
|
35 |
|
36 |
|
37 |
def speech_to_speech_translation(audio):
|
|
|
71 |
with demo:
|
72 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
73 |
|
74 |
+
demo.launch()
|