import gradio as gr import numpy as np import torch from datasets import load_dataset from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, WhisperProcessor, BarkModel, BarkProcessor device = "cuda:0" if torch.cuda.is_available() else "cpu" asr_model_id = "openai/whisper-base" asr_processor = WhisperProcessor.from_pretrained(asr_model_id, language="es", task="transcribe") # load speech translation checkpoint asr_pipe = pipeline( "automatic-speech-recognition", model=asr_model_id, feature_extractor=asr_processor.feature_extractor, tokenizer=asr_processor.tokenizer, device=device) # load text-to-speech checkpoint and speaker embeddings processor = BarkProcessor.from_pretrained("suno/bark-small") model = BarkModel.from_pretrained("suno/bark-small").to(device) def translate(audio): outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "es", "forced_decoder_ids": asr_processor.tokenizer.get_decoder_prompt_ids(language="es", task="translate")}) return outputs["text"] def synthesise(text): inputs = processor(text, voice_preset="v2/es_speaker_3") speech = model.generate(**inputs).cpu().numpy() return speech def speech_to_speech_translation(audio): translated_text = translate(audio) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech title = "Cascaded STST" description = """ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech: ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./example.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()