import os import shutil import torch from natsort import natsorted from glob import glob import cv2 import numpy as np import gradio as gr from PIL import Image os.system("pip install einops") os.system("git clone https://github.com/swz30/Restormer.git") os.chdir('Restormer') # Download pretrained models os.system("wget https://github.com/swz30/Restormer/releases/download/v1.0/real_denoising.pth -P Denoising/pretrained_models") os.system("wget https://github.com/swz30/Restormer/releases/download/v1.0/single_image_defocus_deblurring.pth -P Defocus_Deblurring/pretrained_models") os.system("wget https://github.com/swz30/Restormer/releases/download/v1.0/motion_deblurring.pth -P Motion_Deblurring/pretrained_models") os.system("wget https://github.com/swz30/Restormer/releases/download/v1.0/deraining.pth -P Deraining/pretrained_models") # Download sample images os.system("wget https://github.com/swz30/Restormer/releases/download/v1.0/sample_images.zip -P demo") shutil.unpack_archive('demo/sample_images.zip', 'demo/') os.remove('demo/sample_images.zip') examples = [['demo/sample_images/Real_Denoising/degraded/117355.png', 'Denoising'], ['demo/sample_images/Single_Image_Defocus_Deblurring/degraded/engagement.jpg', 'Defocus Deblurring'], ['demo/sample_images/Motion_Deblurring/degraded/GoPro-GOPR0854_11_00-000090-input.jpg','Motion Deblurring'], ['demo/sample_images/Deraining/degraded/Rain100H-77-input.jpg','Deraining']] title = "Restormer" description = """ Gradio demo for Restormer: Efficient Transformer for High-Resolution Image Restoration, CVPR 2022--ORAL. [Paper][Github Code]\n With Restormer, you can perform: (1) Image Denoising, (2) Defocus Deblurring, (3) Motion Deblurring, and (4) Image Deraining. To use it, simply upload your own image, or click one of the examples provided below. """ article = "
Restormer: Efficient Transformer for High-Resolution Image Restoration | Github Repo
" def inference(img,task): os.system('mkdir temp') max_res = 256 width, height = img.size if max(width,height) > max_res: scale = min(width,height)/max(width,height) if width > max_res: width = max_res height = int(scale*max_res) if height > max_res: height = max_res width = int(scale*max_res) img = img.resize((width,height), Image.ANTIALIAS) img.save("temp/image.jpg", "JPEG") """ if task == 'Motion Deblurring': task = 'Motion_Deblurring' os.system("python demo.py --task 'Motion_Deblurring' --input_dir './temp/image.jpg' --result_dir './temp/'") if task == 'Defocus Deblurring': task = 'Single_Image_Defocus_Deblurring' os.system("python demo.py --task 'Single_Image_Defocus_Deblurring' --input_dir './temp/image.jpg' --result_dir './temp/'") if task == 'Denoising': task = 'Real_Denoising' os.system("python demo.py --task 'Real_Denoising' --input_dir './temp/image.jpg' --result_dir './temp/'") if task == 'Deraining': os.system("python demo.py --task 'Deraining' --input_dir './temp/image.jpg' --result_dir './temp/'") restored = f'temp/{task}/image.png' """ restored = 'temp/image.jpg' return restored gr.Interface( inference, [ gr.inputs.Image(type="pil", label="Input"), gr.inputs.Radio(["Denoising", "Defocus Deblurring", "Motion Deblurring", "Deraining"], default="Denoising", label='task type') ], gr.outputs.Image(type="file", label="Output"), title=title, description=description, article=article, examples=examples, allow_flagging=False, ).launch(debug=True,enable_queue=True)