Spaces:
Runtime error
Runtime error
from transformers import AutoTokenizer, AutoModelForMaskedLM | |
import torch | |
# Load the model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("jfernandez/cebfil-roberta") | |
model = AutoModelForMaskedLM.from_pretrained("jfernandez/cebfil-roberta") | |
# Define a function to generate responses | |
def generate_response(text): | |
# Add a mask token at the end of the text | |
text = text + " <mask>" | |
# Tokenize the text and get the input ids | |
inputs = tokenizer(text, return_tensors="pt") | |
input_ids = inputs["input_ids"] | |
# Get the logits from the model | |
outputs = model(**inputs) | |
logits = outputs.logits | |
# Get the most likely token id for the mask | |
mask_token_id = tokenizer.mask_token_id | |
mask_token_index = torch.where(input_ids == mask_token_id)[1] | |
token_logits = logits[0, mask_token_index, :] | |
top_5_tokens = torch.topk(token_logits.squeeze(), k=5).indices # get top 5 tokens | |
predicted_tokens = tokenizer.convert_ids_to_tokens(top_5_tokens.tolist()) # convert ids to tokens | |
# Choose one of the predicted tokens randomly and replace the mask with it | |
import random | |
response_token = random.choice(predicted_tokens) | |
response_text = text.replace("<mask>", response_token) | |
return response_text | |
# Test the function with some examples | |
print(generate_response("Komosta ka")) | |
print(generate_response("Unsa imong pangalan")) | |
print(generate_response("Salamat sa")) |