from transformers import AutoTokenizer, AutoModelForMaskedLM import torch # Load the model and tokenizer tokenizer = AutoTokenizer.from_pretrained("jfernandez/cebfil-roberta") model = AutoModelForMaskedLM.from_pretrained("jfernandez/cebfil-roberta") # Define a function to generate responses def generate_response(text): # Add a mask token at the end of the text text = text + " " # Tokenize the text and get the input ids inputs = tokenizer(text, return_tensors="pt") input_ids = inputs["input_ids"] # Get the logits from the model outputs = model(**inputs) logits = outputs.logits # Get the most likely token id for the mask mask_token_id = tokenizer.mask_token_id mask_token_index = torch.where(input_ids == mask_token_id)[1] token_logits = logits[0, mask_token_index, :] top_5_tokens = torch.topk(token_logits, k=5).indices # get top 5 tokens predicted_tokens = tokenizer.convert_ids_to_tokens(top_5_tokens.tolist()) # convert ids to tokens # Choose one of the predicted tokens randomly and replace the mask with it import random response_token = random.choice(predicted_tokens) response_text = text.replace("", response_token) return response_text # Test the function with some examples print(generate_response("Komosta ka")) print(generate_response("Unsa imong pangalan")) print(generate_response("Salamat sa"))