#!/usr/bin/env python # coding: utf-8 # In[20]: import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder,StandardScaler from sklearn.pipeline import Pipeline # In[21]: df=pd.read_excel('cars.xls') df.head() # In[22]: #pip install xlrd # In[23]: X=df.drop('Price', axis=1) y=df['Price'] # In[24]: X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42) # In[25]: #!pip install ydata-profiling # In[26]: #import ydata_profiling # In[27]: #df.profile_report() # In[28]: preprocess=ColumnTransformer(transformers=[ ('num',StandardScaler(),['Mileage','Cylinder','Liter','Doors']), ('cat',OneHotEncoder(),['Make','Model','Trim','Type'])]) # Veri önişlemedeki standartlaşma ve one-hot kodlama işlemlerini otomatikleştiriyoruz. # Artık preprocess kullanarak kullanıcıdan gelen veriyi modelimize uygun girdi haline dçnüştürebiliriz. # In[31]: model=LinearRegression() pipe=Pipeline(steps=[('preprocesor', preprocess), ('model', model)]) # In[32]: pipe.fit(X_train, y_train) # In[33]: y_pred=pipe.predict(X_test) mean_squared_error(y_test,y_pred)**0.5,r2_score(y_test,y_pred) # In[ ]: import streamlit as st def price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather): input_data=pd.DataFrame({ 'Make':[make], 'Model':[model], 'Trim':[trim], 'Mileage':[mileage], 'Type':[car_type], 'Car_type':[car_type], 'Cylinder':[cylinder], 'Liter':[liter], 'Doors':[doors], 'Cruise':[cruise], 'Sound':[sound], 'Leather':[leather] }) prediction=pipe.predict(input_data)[0] return prediction st.title("Car Price Prediction :red_car: ") st.write("Enter Car Details to predict the price of the car") make=st.selectbox("Make",df['Make'].unique()) model=st.selectbox("Model",df[df['Make']==make]['Model'].unique()) trim=st.selectbox("Trim",df[(df['Make']==make) & (df['Model']==model)]['Trim'].unique()) mileage=st.number_input("Mileage",200,60000) car_type=st.selectbox("Type",df['Type'].unique()) cylinder=st.selectbox("Cylinder",df['Cylinder'].unique()) liter=st.number_input("Liter",1,6) doors=st.selectbox("Doors",df['Doors'].unique()) cruise=st.radio("Cruise",[True,False]) sound=st.radio("Sound",[True,False]) leather=st.radio("Leather",[True,False]) if st.button("Predict"): pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather) st.write("Predicted Price :red_car: $",round(pred[0],2)) # In[ ]: