Errolmking commited on
Commit
ce2be79
·
1 Parent(s): c474fb7

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +218 -0
app.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain.docstore.document import Document
2
+ from langchain.vectorstores import FAISS
3
+ from langchain.embeddings.openai import OpenAIEmbeddings
4
+ from langchain.memory.simple import SimpleMemory
5
+
6
+ from langchain.chains import ConversationChain, LLMChain, SequentialChain
7
+ from langchain.memory import ConversationBufferMemory
8
+
9
+ from langchain.prompts import ChatPromptTemplate, PromptTemplate
10
+ from langchain.document_loaders import UnstructuredFileLoader
11
+
12
+ from langchain.chat_models import ChatOpenAI
13
+ from langchain.llms import OpenAI
14
+ from langchain.memory import ConversationSummaryMemory
15
+
16
+ from langchain.callbacks import PromptLayerCallbackHandler
17
+ from langchain.prompts.chat import (
18
+ ChatPromptTemplate,
19
+ SystemMessagePromptTemplate,
20
+ AIMessagePromptTemplate,
21
+ HumanMessagePromptTemplate,
22
+ )
23
+
24
+ from langchain.schema import AIMessage, HumanMessage, SystemMessage
25
+ from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
26
+ from langchain.callbacks.base import BaseCallbackHandler
27
+ import gradio as gr
28
+
29
+ from threading import Thread
30
+ from queue import Queue, Empty
31
+ from threading import Thread
32
+ from collections.abc import Generator
33
+ from langchain.llms import OpenAI
34
+ from langchain.callbacks.base import BaseCallbackHandler
35
+
36
+ import itertools
37
+ import time
38
+ import os
39
+ import getpass
40
+ import json
41
+ import sys
42
+ from typing import Any, Dict, List, Union
43
+
44
+ import promptlayer
45
+ import openai
46
+ import gradio as gr
47
+
48
+ from pydantic import BaseModel, Field, validator
49
+
50
+ #Load the FAISS Model ( vector )
51
+ openai.api_key = os.environ["OPENAI_API_KEY"]
52
+ db = FAISS.load_local("db", OpenAIEmbeddings())
53
+
54
+ #API Keys
55
+ promptlayer.api_key = os.environ["PROMPTLAYER"]
56
+
57
+ from langchain.callbacks import PromptLayerCallbackHandler
58
+ from langchain.prompts.chat import (
59
+ ChatPromptTemplate,
60
+ SystemMessagePromptTemplate,
61
+ AIMessagePromptTemplate,
62
+ HumanMessagePromptTemplate,
63
+ )
64
+ from langchain.memory import ConversationSummaryMemory
65
+
66
+ # Defined a QueueCallback, which takes as a Queue object during initialization. Each new token is pushed to the queue.
67
+ class QueueCallback(BaseCallbackHandler):
68
+ """Callback handler for streaming LLM responses to a queue."""
69
+
70
+ def __init__(self, q):
71
+ self.q = q
72
+
73
+ def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
74
+ self.q.put(token)
75
+
76
+ def on_llm_end(self, *args, **kwargs: Any) -> None:
77
+ return self.q.empty()
78
+
79
+ class DDSAgent:
80
+
81
+ def __init__(self, name, db, prompt_template='', model_name='gpt-4', verbose=False, temp=0.2):
82
+ self.db = db
83
+ self.verbose = verbose
84
+ self.llm = ChatOpenAI(
85
+ model_name="gpt-4",
86
+ temperature=temp
87
+ )
88
+
89
+ #The zero shot prompt provided at creation
90
+ self.prompt_template = prompt_template
91
+
92
+ #The LLM used for conversation summarization
93
+ self.summary_llm = ChatOpenAI(
94
+ model_name=model_name,
95
+ max_tokens=25,
96
+ callbacks=[PromptLayerCallbackHandler(pl_tags=["froebel"])],
97
+ streaming=False,
98
+ )
99
+
100
+ #Reviews convesation history and summarizes it to keep the token count down.
101
+ self.memory = ConversationSummaryMemory(llm=self.summary_llm,
102
+ max_token_limit=200,
103
+ memory_key="memory",
104
+ input_key="input")
105
+
106
+ def chain(self, prompt: PromptTemplate, llm: ChatOpenAI) -> LLMChain:
107
+ return LLMChain(
108
+ llm=llm,
109
+ prompt=prompt,
110
+ verbose=self.verbose,
111
+ memory=self.memory
112
+ )
113
+
114
+ def lookup(self, input, num_docs=5):
115
+ docs = self.db.similarity_search(input, k=num_docs)
116
+ docs_to_string = ""
117
+ for doc in docs:
118
+ docs_to_string += str(doc.page_content)
119
+ return docs_to_string
120
+
121
+ def stream(self, input) -> Generator:
122
+
123
+ # Create a Queue
124
+ q = Queue()
125
+ job_done = object()
126
+
127
+ #RAG
128
+ docs = self.lookup(input,5)
129
+
130
+ llm = ChatOpenAI(
131
+ model_name='gpt-4',
132
+ callbacks=[QueueCallback(q),
133
+ PromptLayerCallbackHandler(pl_tags=["froebel"])],
134
+ streaming=True,
135
+ )
136
+
137
+ prompt = PromptTemplate(
138
+ input_variables=['input','docs','history'],
139
+ template=self.prompt_template
140
+ # partial_variables={"format_instructions": self.parser.get_format_instructions()}
141
+ )
142
+
143
+ # Create a funciton to call - this will run in a thread
144
+ def task():
145
+ resp = self.chain(prompt,llm).run(
146
+ {'input':input,
147
+ 'docs':docs,
148
+ 'history':self.memory})
149
+ q.put(job_done)
150
+
151
+ # Create a thread and start the function
152
+ t = Thread(target=task)
153
+ t.start()
154
+
155
+ content = ""
156
+
157
+ # Get each new token from the queue and yield for our generator
158
+ while True:
159
+ try:
160
+ next_token = q.get(True, timeout=1)
161
+ if next_token is job_done:
162
+ break
163
+ content += next_token
164
+ yield next_token, content
165
+ except Empty:
166
+ continue
167
+
168
+
169
+
170
+
171
+ agent_prompt = """
172
+ Roleplay
173
+ You are a UBD ( Understanding by Design ) coach.
174
+ Educators come to you to develop UBD based learning experiences
175
+ and curriculum.
176
+
177
+ This is the conversation up until now:
178
+ {history}
179
+
180
+ The teacher says:
181
+ {input}
182
+
183
+ As a result, following standards were matched:
184
+ {docs}
185
+
186
+ Respond to the teacher message.
187
+
188
+ You have three objectives:
189
+
190
+ a) to help them through the design process
191
+ b) to help simplify the process for the educator
192
+ c) to help build confidence and understand in the ubd process
193
+
194
+ Take it step by step and keep.
195
+ Keep focused on the current task at hand.
196
+ Close with a single guiding step in the form of a question.
197
+ Be encouraging.
198
+
199
+ Do not start with "AI:" or any self identifying text.
200
+
201
+ """
202
+
203
+ dds = DDSAgent('agent', db, prompt_template=agent_prompt)
204
+
205
+ def ask_agent(input, history):
206
+ for next_token, content in dds.stream(input):
207
+ yield(content)
208
+
209
+ gr.ChatInterface(ask_agent,
210
+ title="UBD Coach",
211
+ description="""
212
+ Using the Understanding By Design framework? I can help. (/◕ヮ◕)/
213
+ """,
214
+ theme="monochrome",
215
+ retry_btn=None,
216
+ undo_btn=None,
217
+ clear_btn=None
218
+ ).queue().launch(debug=True)