from langchain.docstore.document import Document from langchain.vectorstores import FAISS from langchain.embeddings.openai import OpenAIEmbeddings from langchain.memory.simple import SimpleMemory from langchain.chains import ConversationChain, LLMChain, SequentialChain from langchain.memory import ConversationBufferMemory from langchain.prompts import ChatPromptTemplate, PromptTemplate from langchain.document_loaders import UnstructuredFileLoader from langchain.chat_models import ChatOpenAI from langchain.llms import OpenAI from langchain.memory import ConversationSummaryMemory from langchain.callbacks import PromptLayerCallbackHandler from langchain.prompts.chat import ( ChatPromptTemplate, SystemMessagePromptTemplate, AIMessagePromptTemplate, HumanMessagePromptTemplate, ) from langchain.schema import AIMessage, HumanMessage, SystemMessage from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.callbacks.base import BaseCallbackHandler import gradio as gr from threading import Thread from queue import Queue, Empty from threading import Thread from collections.abc import Generator from langchain.llms import OpenAI from langchain.callbacks.base import BaseCallbackHandler import itertools import time import os import getpass import json import sys from typing import Any, Dict, List, Union import promptlayer import openai import gradio as gr from pydantic import BaseModel, Field, validator #Load the FAISS Model ( vector ) openai.api_key = os.environ["OPENAI_API_KEY"] db = FAISS.load_local("db", OpenAIEmbeddings()) #API Keys promptlayer.api_key = os.environ["PROMPTLAYER"] MODEL = "gpt-3.5-turbo" # MODEL = "gpt-4" from langchain.callbacks import PromptLayerCallbackHandler from langchain.prompts.chat import ( ChatPromptTemplate, SystemMessagePromptTemplate, AIMessagePromptTemplate, HumanMessagePromptTemplate, ) from langchain.memory import ConversationSummaryMemory # Defined a QueueCallback, which takes as a Queue object during initialization. Each new token is pushed to the queue. class QueueCallback(BaseCallbackHandler): """Callback handler for streaming LLM responses to a queue.""" def __init__(self, q): self.q = q def on_llm_new_token(self, token: str, **kwargs: Any) -> None: self.q.put(token) def on_llm_end(self, *args, **kwargs: Any) -> None: return self.q.empty() MODEL = "gpt-3.5-turbo" # Defined a QueueCallback, which takes as a Queue object during initialization. Each new token is pushed to the queue. class QueueCallback(BaseCallbackHandler): """Callback handler for streaming LLM responses to a queue.""" def __init__(self, q): self.q = q def on_llm_new_token(self, token: str, **kwargs: Any) -> None: self.q.put(token) def on_llm_end(self, *args, **kwargs: Any) -> None: return self.q.empty() class UnitGenerator: def __init__(self, prompt_template='', model_name=MODEL, verbose=False, temp=0.2): self.verbose = verbose self.llm = ChatOpenAI( model_name=MODEL, temperature=temp ) #The zero shot prompt provided at creation self.prompt_template = prompt_template def chain(self, prompt: PromptTemplate, llm: ChatOpenAI) -> LLMChain: return LLMChain( llm=llm, prompt=prompt, verbose=self.verbose, ) def stream(self, input) -> Generator: # Create a Queue q = Queue() job_done = object() llm = ChatOpenAI( model_name=MODEL, callbacks=[QueueCallback(q), PromptLayerCallbackHandler(pl_tags=["unit-generator"])], streaming=True, ) prompt = PromptTemplate( input_variables=['input'], template=self.prompt_template ) # Create a funciton to call - this will run in a thread def task(): resp = self.chain(prompt,llm).run( {'input':input}) q.put(job_done) # Create a thread and start the function t = Thread(target=task) t.start() content = "" # Get each new token from the queue and yield for our generator while True: try: next_token = q.get(True, timeout=1) if next_token is job_done: break content += next_token yield next_token, content except Empty: continue agent_prompt = """ Take the following class overview (delimited by three dollar signs) $$$ {input} $$$ Make a list of 3 big and enduring ideas that students should walk away with. Make a list of 9 essential questions we want students to think about.These questions should be open-ended and provocative. Written in "kid friendly" language. Designed to focus instruction for uncovering the important ideas of the content. Make a list of 7 ideas, concepts, generalizations and principles we want students to know and understand about the unit or topic we are teaching? Make a list of critical skills describing what we want students to be able to do. Each item should begin with "Students will be able to..." Make a list of 7 potential assessments we can use to give students opportunities to demonstrate their skills. Make a list of 7 ways that I might adapt the experience for different learning styles. Make a list of 5 materials and technologies that I can enhance the learning experience. Make a list of 4 learning activities that support and scaffold the learning experience. """ unit_generator = UnitGenerator(prompt_template=agent_prompt) def generate_unit(input): for next_token, content in unit_generator.stream(input): yield(content) gr.Interface(generate_unit, [gr.Textbox( label="Enter your unit vision.", info="Provide high level details for the learning experience." )], [gr.Textbox( label="Unit", )],allow_flagging="never").queue().launch(debug=True, share=True)