Spaces:
Sleeping
Sleeping
first commit
Browse files- README.md +1 -1
- app.py +5 -0
- gradio_tst.py +143 -0
- ranking_evaluator.py +115 -0
- requirements.txt +2 -0
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: Ranking Evaluator
|
3 |
-
emoji:
|
4 |
colorFrom: gray
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
title: Ranking Evaluator
|
3 |
+
emoji: π
|
4 |
colorFrom: gray
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
app.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import evaluate
|
2 |
+
from gradio_tst import launch_gradio_widget2
|
3 |
+
|
4 |
+
module = evaluate.load("ranking_evaluator.py")
|
5 |
+
launch_gradio_widget2(module)
|
gradio_tst.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import sys
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
from datasets import Value
|
10 |
+
|
11 |
+
REGEX_YAML_BLOCK = re.compile(r"---[\n\r]+([\S\s]*?)[\n\r]+---[\n\r]")
|
12 |
+
|
13 |
+
|
14 |
+
def infer_gradio_input_types(feature_types):
|
15 |
+
"""
|
16 |
+
Maps metric feature types to input types for gradio Dataframes:
|
17 |
+
- float/int -> numbers
|
18 |
+
- string -> strings
|
19 |
+
- any other -> json
|
20 |
+
Note that json is not a native gradio type but will be treated as string that
|
21 |
+
is then parsed as a json.
|
22 |
+
"""
|
23 |
+
input_types = []
|
24 |
+
for feature_type in feature_types:
|
25 |
+
input_type = "json"
|
26 |
+
if isinstance(feature_type, Value):
|
27 |
+
if feature_type.dtype.startswith(
|
28 |
+
"int"
|
29 |
+
) or feature_type.dtype.startswith("float"):
|
30 |
+
input_type = "number"
|
31 |
+
elif feature_type.dtype == "string":
|
32 |
+
input_type = "str"
|
33 |
+
input_types.append(input_type)
|
34 |
+
return input_types
|
35 |
+
|
36 |
+
|
37 |
+
def json_to_string_type(input_types):
|
38 |
+
"""Maps json input type to str."""
|
39 |
+
return ["str" if i == "json" else i for i in input_types]
|
40 |
+
|
41 |
+
|
42 |
+
def parse_readme(filepath):
|
43 |
+
"""Parses a repositories README and removes"""
|
44 |
+
if not os.path.exists(filepath):
|
45 |
+
return "No README.md found."
|
46 |
+
with open(filepath, "r") as f:
|
47 |
+
text = f.read()
|
48 |
+
match = REGEX_YAML_BLOCK.search(text)
|
49 |
+
if match:
|
50 |
+
text = text[match.end() :]
|
51 |
+
return text
|
52 |
+
|
53 |
+
|
54 |
+
def parse_gradio_data(data, input_types):
|
55 |
+
"""Parses data from gradio Dataframe for use in metric."""
|
56 |
+
metric_inputs = {}
|
57 |
+
data.replace("", np.nan, inplace=True)
|
58 |
+
data.dropna(inplace=True)
|
59 |
+
for feature_name, input_type in zip(data, input_types):
|
60 |
+
if input_type == "json":
|
61 |
+
metric_inputs[feature_name] = [
|
62 |
+
json.loads(d) for d in data[feature_name].to_list()
|
63 |
+
]
|
64 |
+
elif input_type == "str":
|
65 |
+
metric_inputs[feature_name] = [
|
66 |
+
d.strip('"') for d in data[feature_name].to_list()
|
67 |
+
]
|
68 |
+
else:
|
69 |
+
metric_inputs[feature_name] = data[feature_name]
|
70 |
+
return metric_inputs
|
71 |
+
|
72 |
+
|
73 |
+
def parse_test_cases(test_cases, feature_names, input_types):
|
74 |
+
"""
|
75 |
+
Parses test cases to be used in gradio Dataframe. Note that an apostrophe is added
|
76 |
+
to strings to follow the format in json.
|
77 |
+
"""
|
78 |
+
if len(test_cases) == 0:
|
79 |
+
return None
|
80 |
+
examples = []
|
81 |
+
for test_case in test_cases:
|
82 |
+
parsed_cases = []
|
83 |
+
for feat, input_type in zip(feature_names, input_types):
|
84 |
+
if input_type == "json":
|
85 |
+
parsed_cases.append(
|
86 |
+
[str(element) for element in test_case[feat]]
|
87 |
+
)
|
88 |
+
elif input_type == "str":
|
89 |
+
parsed_cases.append(
|
90 |
+
['"' + element + '"' for element in test_case[feat]]
|
91 |
+
)
|
92 |
+
else:
|
93 |
+
parsed_cases.append(test_case[feat])
|
94 |
+
examples.append([list(i) for i in zip(*parsed_cases)])
|
95 |
+
return examples
|
96 |
+
|
97 |
+
|
98 |
+
def launch_gradio_widget2(metric):
|
99 |
+
"""Launches `metric` widget with Gradio."""
|
100 |
+
|
101 |
+
try:
|
102 |
+
import gradio as gr
|
103 |
+
except ImportError as error:
|
104 |
+
logging.error(
|
105 |
+
"To create a metric widget with Gradio make sure gradio is installed."
|
106 |
+
)
|
107 |
+
raise error
|
108 |
+
|
109 |
+
local_path = Path(sys.path[0])
|
110 |
+
# if there are several input types, use first as default.
|
111 |
+
if isinstance(metric.features, list):
|
112 |
+
(feature_names, feature_types) = zip(*metric.features[0].items())
|
113 |
+
else:
|
114 |
+
(feature_names, feature_types) = zip(*metric.features.items())
|
115 |
+
gradio_input_types = infer_gradio_input_types(feature_types)
|
116 |
+
|
117 |
+
def compute(data):
|
118 |
+
return metric.compute(**parse_gradio_data(data, gradio_input_types))
|
119 |
+
|
120 |
+
test_cases = [
|
121 |
+
{
|
122 |
+
"predictions": [[0.0, 5.0, 4.0, 3.0], [1.0, 4.0, 2.0]],
|
123 |
+
"references": [[0.0, 5.0, 4.0, 3.0], [4.0, 3.0, 1.0]],
|
124 |
+
}
|
125 |
+
]
|
126 |
+
iface = gr.Interface(
|
127 |
+
fn=compute,
|
128 |
+
inputs=gr.Dataframe(
|
129 |
+
headers=feature_names,
|
130 |
+
col_count=len(feature_names),
|
131 |
+
row_count=1,
|
132 |
+
datatype=json_to_string_type(gradio_input_types),
|
133 |
+
),
|
134 |
+
outputs=gr.Textbox(label=metric.name),
|
135 |
+
description=(metric.info.description),
|
136 |
+
title=f"Metric: {metric.name}",
|
137 |
+
article=parse_readme(local_path / "README.md"),
|
138 |
+
examples=[
|
139 |
+
parse_test_cases(test_cases, feature_names, gradio_input_types)
|
140 |
+
],
|
141 |
+
)
|
142 |
+
|
143 |
+
iface.launch(share=True)
|
ranking_evaluator.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
import evaluate
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
_CITATION = """\
|
6 |
+
@inproceedings{palotti2019,
|
7 |
+
author = {Palotti, Joao and Scells, Harrisen and Zuccon, Guido},
|
8 |
+
title = {TrecTools: an open-source Python library for Information Retrieval practitioners involved in TREC-like campaigns},
|
9 |
+
series = {SIGIR'19},
|
10 |
+
year = {2019},
|
11 |
+
location = {Paris, France},
|
12 |
+
publisher = {ACM}
|
13 |
+
}
|
14 |
+
"""
|
15 |
+
|
16 |
+
_DESCRIPTION = """\
|
17 |
+
A metric to evaluate ranking tasks using the TREC evaluation tool. It compares predicted rankings of items (e.g., documents) with their true relevance scores. The metric takes two inputs: references (true relevance scores) and predictions (predicted scores), both as lists of lists, where each (i, j) is the truth or the predicted score of the document j in the query i. In a nutshell: simplifies the usage of TREC to compute ranking metrics given scores per sample.
|
18 |
+
"""
|
19 |
+
|
20 |
+
_KWARGS_DESCRIPTION = """ Computes MAP, P@K, RR, and NDCG using the TREC evaluation tool.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
references (list(list(float))): true scores for each query
|
24 |
+
predictions (list(list(float))): pred scores for each query
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
Dict: the set of TREC's metrics scores
|
28 |
+
|
29 |
+
Example:
|
30 |
+
# (i, j) means the truth/predicted score of the document j in the query i
|
31 |
+
references = [[5, 0, 3, 0, 0, 2, 1],
|
32 |
+
[5, 0, 3, 0, 0, 2, 1],
|
33 |
+
[5, 0, 3, 0, 0, 2, 1],
|
34 |
+
[0, 1, 2]]
|
35 |
+
|
36 |
+
predictions = [[3, 4, 2, 0, 1, 5, 0],
|
37 |
+
[2, 0, 4, 5, 0, 1, 3],
|
38 |
+
[0, 3, 2, 1, 5, 0, 4],
|
39 |
+
[5, 3, 2]]
|
40 |
+
|
41 |
+
metric = evaluate.load("symanto/ranking_evaluator")
|
42 |
+
metric.compute(references=references, predictions=predictions)
|
43 |
+
"""
|
44 |
+
|
45 |
+
|
46 |
+
class RankingEvaluator(evaluate.Metric):
|
47 |
+
def _info(self):
|
48 |
+
return evaluate.MetricInfo(
|
49 |
+
description=_DESCRIPTION,
|
50 |
+
citation=_CITATION,
|
51 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
52 |
+
features=datasets.Features(
|
53 |
+
{
|
54 |
+
"predictions": datasets.Sequence(datasets.Value("float32")),
|
55 |
+
"references": datasets.Sequence(datasets.Value("float32")),
|
56 |
+
}
|
57 |
+
),
|
58 |
+
)
|
59 |
+
|
60 |
+
def _download_and_prepare(self, dl_manager):
|
61 |
+
self.trec_eval = evaluate.load("trec_eval")
|
62 |
+
|
63 |
+
def _compute(
|
64 |
+
self, references: list[list[float]], predictions: list[list[float]]
|
65 |
+
) -> dict:
|
66 |
+
"""
|
67 |
+
Calculates MAP, P@K, RR, and NDCG using the TREC evaluation tool.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
references (list(list(float))): true scores for each query
|
71 |
+
predictions (list(list(float))): pred scores for each query
|
72 |
+
|
73 |
+
Returns:
|
74 |
+
Dict: the set of TREC's metrics scores
|
75 |
+
|
76 |
+
Example:
|
77 |
+
# (i, j) means the truth/predicted score of the document j in the query i
|
78 |
+
references = [[5, 0, 3, 0, 0, 2, 1],
|
79 |
+
[5, 0, 3, 0, 0, 2, 1],
|
80 |
+
[5, 0, 3, 0, 0, 2, 1],
|
81 |
+
[0, 1, 2]]
|
82 |
+
|
83 |
+
predictions = [[3, 4, 2, 0, 1, 5, 0],
|
84 |
+
[2, 0, 4, 5, 0, 1, 3],
|
85 |
+
[0, 3, 2, 1, 5, 0, 4],
|
86 |
+
[5, 3, 2]]
|
87 |
+
|
88 |
+
metric = evaluate.load("symanto/ranking_evaluator")
|
89 |
+
metric.compute(references=references, predictions=predictions)
|
90 |
+
"""
|
91 |
+
qrel = {}
|
92 |
+
run = {}
|
93 |
+
|
94 |
+
# Fill qrel
|
95 |
+
for query_idx, truth in enumerate(references):
|
96 |
+
for item_idx, relevance in enumerate(truth):
|
97 |
+
if relevance > 0:
|
98 |
+
qrel.setdefault("query", []).append(query_idx)
|
99 |
+
qrel.setdefault("q0", []).append("q0")
|
100 |
+
qrel.setdefault("docid", []).append(f"doc_{item_idx}")
|
101 |
+
qrel.setdefault("rel", []).append(relevance)
|
102 |
+
|
103 |
+
# Fill run
|
104 |
+
for query_idx, pred in enumerate(predictions):
|
105 |
+
ranking = np.argsort(np.argsort(pred)[::-1])
|
106 |
+
for item_idx, score in enumerate(pred):
|
107 |
+
if score > 0:
|
108 |
+
run.setdefault("query", []).append(query_idx)
|
109 |
+
run.setdefault("q0", []).append("q0")
|
110 |
+
run.setdefault("docid", []).append(f"doc_{item_idx}")
|
111 |
+
run.setdefault("score", []).append(score)
|
112 |
+
run.setdefault("system", []).append("sys")
|
113 |
+
run.setdefault("rank", []).append(ranking[item_idx])
|
114 |
+
|
115 |
+
return self.trec_eval.compute(references=[qrel], predictions=[run])
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
trectools
|
2 |
+
git+https://github.com/huggingface/evaluate@a4bdc10c48a450b978d91389a48dbb5297835c7d
|