Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import os | |
# Fetch the API key from environment variables | |
api_key = os.getenv('HF_API_KEY') | |
# Configure the Inference API client | |
client = InferenceClient("meta-llama-3-120b-instruct-zoa", token=api_key) | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
messages = [{"role": "system", "content": system_message}] | |
for user_msg, assistant_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
messages.append({"role": "user", "content": message}) | |
try: | |
responses = client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
except Exception as e: | |
yield f"Error: {str(e)}" | |
return | |
response = "" | |
for res in responses: | |
response += res.choices[0].delta.content | |
yield response | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly assistant.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p (nucleus sampling)"), | |
], | |
title="Meta-Llama Chat", | |
description="A chat interface powered by Meta Llama 3-120B model." | |
) | |
if __name__ == "__main__": | |
demo.launch() |