Spaces:
Runtime error
Runtime error
File size: 14,693 Bytes
7900c16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
"""
This script provides an example to wrap TencentPretrain for classification.
"""
import sys
import os
import random
import argparse
import torch
import torch.nn as nn
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)
from tencentpretrain.embeddings import *
from tencentpretrain.encoders import *
from tencentpretrain.utils.vocab import Vocab
from tencentpretrain.utils.constants import *
from tencentpretrain.utils import *
from tencentpretrain.utils.optimizers import *
from tencentpretrain.utils.config import load_hyperparam
from tencentpretrain.utils.seed import set_seed
from tencentpretrain.utils.logging import init_logger
from tencentpretrain.utils.misc import pooling
from tencentpretrain.model_saver import save_model
from tencentpretrain.opts import finetune_opts, tokenizer_opts, adv_opts
class Classifier(nn.Module):
def __init__(self, args):
super(Classifier, self).__init__()
self.embedding = Embedding(args)
for embedding_name in args.embedding:
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab))
self.embedding.update(tmp_emb, embedding_name)
self.encoder = str2encoder[args.encoder](args)
self.labels_num = args.labels_num
self.pooling_type = args.pooling
self.soft_targets = args.soft_targets
self.soft_alpha = args.soft_alpha
self.output_layer_1 = nn.Linear(args.hidden_size, args.hidden_size)
self.output_layer_2 = nn.Linear(args.hidden_size, self.labels_num)
def forward(self, src, tgt, seg, soft_tgt=None):
"""
Args:
src: [batch_size x seq_length]
tgt: [batch_size]
seg: [batch_size x seq_length]
"""
# Embedding.
emb = self.embedding(src, seg)
# Encoder.
output = self.encoder(emb, seg)
# Target.
output = pooling(output, seg, self.pooling_type)
output = torch.tanh(self.output_layer_1(output))
logits = self.output_layer_2(output)
if tgt is not None:
if self.soft_targets and soft_tgt is not None:
loss = self.soft_alpha * nn.MSELoss()(logits, soft_tgt) + \
(1 - self.soft_alpha) * nn.NLLLoss()(nn.LogSoftmax(dim=-1)(logits), tgt.view(-1))
else:
loss = nn.NLLLoss()(nn.LogSoftmax(dim=-1)(logits), tgt.view(-1))
return loss, logits
else:
return None, logits
def count_labels_num(path):
labels_set, columns = set(), {}
with open(path, mode="r", encoding="utf-8") as f:
for line_id, line in enumerate(f):
if line_id == 0:
for i, column_name in enumerate(line.rstrip("\r\n").split("\t")):
columns[column_name] = i
continue
line = line.rstrip("\r\n").split("\t")
label = int(line[columns["label"]])
labels_set.add(label)
return len(labels_set)
def load_or_initialize_parameters(args, model):
if args.pretrained_model_path is not None:
# Initialize with pretrained model.
model.load_state_dict(torch.load(args.pretrained_model_path, map_location="cpu"), strict=False)
else:
# Initialize with normal distribution.
for n, p in list(model.named_parameters()):
if "gamma" not in n and "beta" not in n:
p.data.normal_(0, 0.02)
def build_optimizer(args, model):
param_optimizer = list(model.named_parameters())
no_decay = ["bias", "gamma", "beta"]
optimizer_grouped_parameters = [
{"params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], "weight_decay": 0.01},
{"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
if args.optimizer in ["adamw"]:
optimizer = str2optimizer[args.optimizer](optimizer_grouped_parameters, lr=args.learning_rate, correct_bias=False)
else:
optimizer = str2optimizer[args.optimizer](optimizer_grouped_parameters, lr=args.learning_rate,
scale_parameter=False, relative_step=False)
if args.scheduler in ["constant"]:
scheduler = str2scheduler[args.scheduler](optimizer)
elif args.scheduler in ["constant_with_warmup"]:
scheduler = str2scheduler[args.scheduler](optimizer, args.train_steps*args.warmup)
else:
scheduler = str2scheduler[args.scheduler](optimizer, args.train_steps*args.warmup, args.train_steps)
return optimizer, scheduler
def batch_loader(batch_size, src, tgt, seg, soft_tgt=None):
instances_num = src.size()[0]
for i in range(instances_num // batch_size):
src_batch = src[i * batch_size : (i + 1) * batch_size, :]
tgt_batch = tgt[i * batch_size : (i + 1) * batch_size]
seg_batch = seg[i * batch_size : (i + 1) * batch_size, :]
if soft_tgt is not None:
soft_tgt_batch = soft_tgt[i * batch_size : (i + 1) * batch_size, :]
yield src_batch, tgt_batch, seg_batch, soft_tgt_batch
else:
yield src_batch, tgt_batch, seg_batch, None
if instances_num > instances_num // batch_size * batch_size:
src_batch = src[instances_num // batch_size * batch_size :, :]
tgt_batch = tgt[instances_num // batch_size * batch_size :]
seg_batch = seg[instances_num // batch_size * batch_size :, :]
if soft_tgt is not None:
soft_tgt_batch = soft_tgt[instances_num // batch_size * batch_size :, :]
yield src_batch, tgt_batch, seg_batch, soft_tgt_batch
else:
yield src_batch, tgt_batch, seg_batch, None
def read_dataset(args, path):
dataset, columns = [], {}
with open(path, mode="r", encoding="utf-8") as f:
for line_id, line in enumerate(f):
if line_id == 0:
for i, column_name in enumerate(line.rstrip("\r\n").split("\t")):
columns[column_name] = i
continue
line = line.rstrip("\r\n").split("\t")
tgt = int(line[columns["label"]])
if args.soft_targets and "logits" in columns.keys():
soft_tgt = [float(value) for value in line[columns["logits"]].split(" ")]
if "text_b" not in columns: # Sentence classification.
text_a = line[columns["text_a"]]
src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN])
seg = [1] * len(src)
else: # Sentence-pair classification.
text_a, text_b = line[columns["text_a"]], line[columns["text_b"]]
src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN])
src_b = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_b) + [SEP_TOKEN])
src = src_a + src_b
seg = [1] * len(src_a) + [2] * len(src_b)
if len(src) > args.seq_length:
src = src[: args.seq_length]
seg = seg[: args.seq_length]
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0]
while len(src) < args.seq_length:
src.append(PAD_ID)
seg.append(0)
if args.soft_targets and "logits" in columns.keys():
dataset.append((src, tgt, seg, soft_tgt))
else:
dataset.append((src, tgt, seg))
return dataset
def train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch, soft_tgt_batch=None):
model.zero_grad()
src_batch = src_batch.to(args.device)
tgt_batch = tgt_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
if soft_tgt_batch is not None:
soft_tgt_batch = soft_tgt_batch.to(args.device)
loss, _ = model(src_batch, tgt_batch, seg_batch, soft_tgt_batch)
if torch.cuda.device_count() > 1:
loss = torch.mean(loss)
if args.fp16:
with args.amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
if args.use_adv and args.adv_type == "fgm":
args.adv_method.attack(epsilon=args.fgm_epsilon)
loss_adv, _ = model(src_batch, tgt_batch, seg_batch, soft_tgt_batch)
if torch.cuda.device_count() > 1:
loss_adv = torch.mean(loss_adv)
loss_adv.backward()
args.adv_method.restore()
if args.use_adv and args.adv_type == "pgd":
K = args.pgd_k
args.adv_method.backup_grad()
for t in range(K):
# apply the perturbation to embedding
args.adv_method.attack(epsilon=args.pgd_epsilon, alpha=args.pgd_alpha,
is_first_attack=(t == 0))
if t != K - 1:
model.zero_grad()
else:
args.adv_method.restore_grad()
loss_adv, _ = model(src_batch, tgt_batch, seg_batch, soft_tgt_batch)
if torch.cuda.device_count() > 1:
loss_adv = torch.mean(loss_adv)
loss_adv.backward()
args.adv_method.restore()
optimizer.step()
scheduler.step()
return loss
def evaluate(args, dataset):
src = torch.LongTensor([sample[0] for sample in dataset])
tgt = torch.LongTensor([sample[1] for sample in dataset])
seg = torch.LongTensor([sample[2] for sample in dataset])
batch_size = args.batch_size
correct = 0
# Confusion matrix.
confusion = torch.zeros(args.labels_num, args.labels_num, dtype=torch.long)
args.model.eval()
for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)):
src_batch = src_batch.to(args.device)
tgt_batch = tgt_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
with torch.no_grad():
_, logits = args.model(src_batch, tgt_batch, seg_batch)
pred = torch.argmax(nn.Softmax(dim=1)(logits), dim=1)
gold = tgt_batch
for j in range(pred.size()[0]):
confusion[pred[j], gold[j]] += 1
correct += torch.sum(pred == gold).item()
args.logger.info("Confusion matrix:")
args.logger.info(confusion)
args.logger.info("Report precision, recall, and f1:")
eps = 1e-9
for i in range(confusion.size()[0]):
p = confusion[i, i].item() / (confusion[i, :].sum().item() + eps)
r = confusion[i, i].item() / (confusion[:, i].sum().item() + eps)
f1 = 2 * p * r / (p + r + eps)
args.logger.info("Label {}: {:.3f}, {:.3f}, {:.3f}".format(i, p, r, f1))
args.logger.info("Acc. (Correct/Total): {:.4f} ({}/{}) ".format(correct / len(dataset), correct, len(dataset)))
return correct / len(dataset), confusion
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
finetune_opts(parser)
tokenizer_opts(parser)
parser.add_argument("--soft_targets", action='store_true',
help="Train model with logits.")
parser.add_argument("--soft_alpha", type=float, default=0.5,
help="Weight of the soft targets loss.")
adv_opts(parser)
args = parser.parse_args()
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
# Count the number of labels.
args.labels_num = count_labels_num(args.train_path)
# Build tokenizer.
args.tokenizer = str2tokenizer[args.tokenizer](args)
set_seed(args.seed)
# Build classification model.
model = Classifier(args)
# Load or initialize parameters.
load_or_initialize_parameters(args, model)
# Get logger.
args.logger = init_logger(args)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(args.device)
# Training phase.
trainset = read_dataset(args, args.train_path)
instances_num = len(trainset)
batch_size = args.batch_size
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1
args.logger.info("Batch size: {}".format(batch_size))
args.logger.info("The number of training instances: {}".format(instances_num))
optimizer, scheduler = build_optimizer(args, model)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
args.amp = amp
if torch.cuda.device_count() > 1:
args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
args.model = model
if args.use_adv:
args.adv_method = str2adv[args.adv_type](model)
total_loss, result, best_result = 0.0, 0.0, 0.0
args.logger.info("Start training.")
for epoch in range(1, args.epochs_num + 1):
random.shuffle(trainset)
src = torch.LongTensor([example[0] for example in trainset])
tgt = torch.LongTensor([example[1] for example in trainset])
seg = torch.LongTensor([example[2] for example in trainset])
if args.soft_targets:
soft_tgt = torch.FloatTensor([example[3] for example in trainset])
else:
soft_tgt = None
model.train()
for i, (src_batch, tgt_batch, seg_batch, soft_tgt_batch) in enumerate(batch_loader(batch_size, src, tgt, seg, soft_tgt)):
loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch, soft_tgt_batch)
total_loss += loss.item()
if (i + 1) % args.report_steps == 0:
args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps))
total_loss = 0.0
result = evaluate(args, read_dataset(args, args.dev_path))
if result[0] > best_result:
best_result = result[0]
save_model(model, args.output_model_path)
# Evaluation phase.
if args.test_path is not None:
args.logger.info("Test set evaluation.")
if torch.cuda.device_count() > 1:
args.model.module.load_state_dict(torch.load(args.output_model_path))
else:
args.model.load_state_dict(torch.load(args.output_model_path))
evaluate(args, read_dataset(args, args.test_path))
if __name__ == "__main__":
main()
|