Spaces:
Runtime error
Runtime error
File size: 6,817 Bytes
7900c16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
"""
This script provides an example to wrap TencentPretrain for classification with cross validation.
"""
import sys
import os
import random
import argparse
import torch.nn as nn
import numpy as np
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)
from tencentpretrain.utils.constants import *
from tencentpretrain.utils import *
from tencentpretrain.utils.optimizers import *
from tencentpretrain.utils.config import load_hyperparam
from tencentpretrain.utils.seed import set_seed
from tencentpretrain.model_saver import save_model
from tencentpretrain.opts import *
from finetune.run_classifier import *
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Path options.
parser.add_argument("--pretrained_model_path", default=None, type=str,
help="Path of the pretrained model.")
parser.add_argument("--output_model_path", default="models/classifier_model.bin", type=str,
help="Path of the output model.")
parser.add_argument("--train_path", type=str, required=True,
help="Path of the trainset.")
parser.add_argument("--config_path", default="models/bert/base_config.json", type=str,
help="Path of the config file.")
parser.add_argument("--train_features_path", type=str, required=True,
help="Path of the train features for stacking.")
# Model options.
model_opts(parser)
# Tokenizer options.
tokenizer_opts(parser)
# Optimization options.
optimization_opts(parser)
parser.add_argument("--soft_targets", action='store_true',
help="Train model with logits.")
parser.add_argument("--soft_alpha", type=float, default=0.5,
help="Weight of the soft targets loss.")
# Training options.
training_opts(parser)
# Cross validation options.
parser.add_argument("--folds_num", type=int, default=5,
help="The number of folds for cross validation.")
adv_opts(parser)
args = parser.parse_args()
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
# Get logger.
args.logger = init_logger(args)
set_seed(args.seed)
# Count the number of labels.
args.labels_num = count_labels_num(args.train_path)
# Build tokenizer.
args.tokenizer = str2tokenizer[args.tokenizer](args)
# Training phase.
dataset = read_dataset(args, args.train_path)
instances_num = len(dataset)
batch_size = args.batch_size
instances_num_per_fold = instances_num // args.folds_num + 1
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1
train_features = []
total_loss, result = 0.0, 0.0
acc, marco_f1 = 0.0, 0.0
for fold_id in range(args.folds_num):
# Build classification model.
model = Classifier(args)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(args.device)
load_or_initialize_parameters(args, model)
optimizer, scheduler = build_optimizer(args, model)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
args.amp = amp
if torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model)
args.model = model
if args.use_adv:
args.adv_method = str2adv[args.adv_type](model)
trainset = dataset[0 : fold_id * instances_num_per_fold] + dataset[(fold_id + 1) * instances_num_per_fold :]
devset = dataset[fold_id * instances_num_per_fold : (fold_id + 1) * instances_num_per_fold]
dev_src = torch.LongTensor([example[0] for example in devset])
dev_tgt = torch.LongTensor([example[1] for example in devset])
dev_seg = torch.LongTensor([example[2] for example in devset])
dev_soft_tgt = None
for epoch in range(1, args.epochs_num + 1):
random.shuffle(trainset)
train_src = torch.LongTensor([example[0] for example in trainset])
train_tgt = torch.LongTensor([example[1] for example in trainset])
train_seg = torch.LongTensor([example[2] for example in trainset])
if args.soft_targets:
train_soft_tgt = torch.FloatTensor([example[3] for example in trainset])
else:
train_soft_tgt = None
model.train()
for i, (src_batch, tgt_batch, seg_batch, soft_tgt_batch) in enumerate(batch_loader(batch_size, train_src, train_tgt, train_seg, train_soft_tgt)):
loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch, soft_tgt_batch)
total_loss += loss.item()
if (i + 1) % args.report_steps == 0:
args.logger.info("Fold id: {}, Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(fold_id, epoch, i + 1, total_loss / args.report_steps))
total_loss = 0.0
model.eval()
for i, (src_batch, tgt_batch, seg_batch, soft_tgt_batch) in enumerate(batch_loader(batch_size, dev_src, dev_tgt, dev_seg, dev_soft_tgt)):
src_batch = src_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
with torch.no_grad():
_, logits = model(src_batch, None, seg_batch)
prob = nn.Softmax(dim=1)(logits)
prob = prob.cpu().numpy().tolist()
train_features.extend(prob)
output_model_name = ".".join(args.output_model_path.split(".")[:-1])
output_model_suffix = args.output_model_path.split(".")[-1]
save_model(model, output_model_name + "-fold_" + str(fold_id) + "." + output_model_suffix)
result = evaluate(args, devset)
acc += result[0] / args.folds_num
f1 = []
confusion = result[1]
eps = 1e-9
for i in range(confusion.size()[0]):
p = confusion[i, i].item() / (confusion[i, :].sum().item() + eps)
r = confusion[i, i].item() / (confusion[:, i].sum().item() + eps)
f1.append(2 * p * r / (p + r + eps))
marco_f1 += sum(f1) / len(f1) / args.folds_num
train_features = np.array(train_features)
np.save(args.train_features_path, train_features)
args.logger.info("Acc. : {:.4f}".format(acc))
args.logger.info("Marco F1 : {:.4f}".format(marco_f1))
if __name__ == "__main__":
main()
|