File size: 12,486 Bytes
7900c16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
"""
This script provides an example to use prompt for classification.
"""
import re
import sys
import os
import logging
import random
import argparse
import torch
import torch.nn as nn

tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)

from finetune.run_classifier import *
from tencentpretrain.targets import *


class ClozeTest(nn.Module):
    def __init__(self, args):
        super(ClozeTest, self).__init__()
        self.embedding = Embedding(args)
        for embedding_name in args.embedding:
            tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab))
            self.embedding.update(tmp_emb, embedding_name)
        self.encoder = str2encoder[args.encoder](args)
        self.target = MlmTarget(args, len(args.tokenizer.vocab))
        if args.tie_weights:
            self.target.mlm_linear_2.weight = self.embedding.word_embedding.weight
        self.answer_position = args.answer_position
        self.device = args.device

    def forward(self, src, tgt, seg):
        emb = self.embedding(src, seg)
        memory_bank = self.encoder(emb, seg)
        output_mlm = self.target.act(self.target.mlm_linear_1(memory_bank))
        output_mlm = self.target.layer_norm(output_mlm)
        tgt_mlm = tgt.contiguous().view(-1)
        if self.target.factorized_embedding_parameterization:
            output_mlm = output_mlm.contiguous().view(-1, self.target.emb_size)
        else:
            output_mlm = output_mlm.contiguous().view(-1, self.target.hidden_size)
        output_mlm = output_mlm[tgt_mlm > 0, :]
        tgt_mlm = tgt_mlm[tgt_mlm > 0]
        self.answer_position = self.answer_position.to(self.device).view(-1)
        logits = self.target.mlm_linear_2(output_mlm)
        logits = logits * self.answer_position
        prob = self.target.softmax(logits)
        loss = self.target.criterion(prob, tgt_mlm)
        pred = prob[:, self.answer_position > 0].argmax(dim=-1)

        return loss, pred, logits


def read_dataset(args, path):
    dataset, columns = [], {}
    count, ignore_count = 0, 0
    with open(path, mode="r", encoding="utf-8") as f:
        for line_id, line in enumerate(f):
            if line_id == 0:
                for i, column_name in enumerate(line.rstrip("\r\n").split("\t")):
                    columns[column_name] = i
                continue
            line = line.rstrip("\r\n").split("\t")
            mask_position = -1
            label = args.answer_word_dict[str(line[columns["label"]])]
            tgt_token_id = args.tokenizer.vocab[label]
            src = [args.tokenizer.vocab.get(CLS_TOKEN)]
            if "text_b" not in columns:  # Sentence classification.
                text_a = line[columns["text_a"]]
                text_a_token_id = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_a))
                max_length = args.seq_length - args.template_length - 2
                text_a_token_id = text_a_token_id[:max_length]
                for prompt_token in args.prompt_template:
                    if prompt_token == "[TEXT_A]":
                        src += text_a_token_id
                    elif prompt_token == "[ANS]":
                        src += [args.tokenizer.vocab.get(MASK_TOKEN)]
                        mask_position = len(src) - 1
                    else:
                        src += prompt_token
            else:  # Sentence-pair classification.
                text_a, text_b = line[columns["text_a"]], line[columns["text_b"]]
                text_a_token_id = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_a))
                text_b_token_id = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_b))
                max_length = args.seq_length - args.template_length - len(text_a_token_id) - 3
                text_b_token_id = text_b_token_id[:max_length]
                for prompt_token in args.prompt_template:
                    if prompt_token == "[TEXT_A]":
                        src += text_a_token_id
                        src += [args.tokenizer.vocab.get(SEP_TOKEN)]
                    elif prompt_token == "[ANS]":
                        src += [args.tokenizer.vocab.get(MASK_TOKEN)]
                        mask_position = len(src) - 1
                    elif prompt_token == "[TEXT_B]":
                        src += text_b_token_id
                    else:
                        src += prompt_token
            src += [args.tokenizer.vocab.get(SEP_TOKEN)]
            seg = [1] * len(src)

            if len(src) > args.seq_length:
                src = src[: args.seq_length]
                seg = seg[: args.seq_length]

            PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0]
            while len(src) < args.seq_length:
                src.append(PAD_ID)
                seg.append(0)
            tgt = [0] * len(src)
            # Ignore the sentence which the answer is not in a sequence
            if mask_position >= args.seq_length:
                ignore_count += 1
                continue
            tgt[mask_position] = tgt_token_id
            count += 1
            dataset.append((src, tgt, seg))
        args.logger.info(f"read dataset, count:{count}, ignore_count:{ignore_count}")
    return dataset


def train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch):
    model.zero_grad()

    src_batch = src_batch.to(args.device)
    tgt_batch = tgt_batch.to(args.device)
    seg_batch = seg_batch.to(args.device)

    loss, _, _ = model(src_batch, tgt_batch, seg_batch)
    if torch.cuda.device_count() > 1:
        loss = torch.mean(loss)

    if args.fp16:
        with args.amp.scale_loss(loss, optimizer) as scaled_loss:
            scaled_loss.backward()
    else:
        loss.backward()

    optimizer.step()
    scheduler.step()

    return loss


def process_prompt_template(args):
    with open(args.prompt_path, "r", encoding="utf-8") as f_json:
        temp_dict = json.load(f_json)
        template_str = temp_dict[args.prompt_id]["template"]
        template_list = re.split(r"(\[TEXT_B\]|\[TEXT_A\]|\[ANS\])", template_str)
        args.prompt_template = []
        template_length = 0
        for term in template_list:
            if len(term) > 0:
                if term not in ["[TEXT_B]", "[TEXT_A]", "[ANS]"]:
                    term_tokens = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(term))
                    args.prompt_template.append(term_tokens)
                    template_length += len(term_tokens)
                elif term in ["[TEXT_B]", "[TEXT_A]"]:
                    args.prompt_template.append(term)
                else:
                    args.prompt_template.append(term)
                    template_length += 1
        print(args.prompt_template)
        args.answer_word_dict = temp_dict[args.prompt_id]["answer_words"]
        args.answer_word_dict_inv = {v: k for k, v in args.answer_word_dict.items()}
        args.template_length = template_length


def evaluate(args, dataset):
    src = torch.LongTensor([sample[0] for sample in dataset])
    tgt = torch.LongTensor([sample[1] for sample in dataset])
    seg = torch.LongTensor([sample[2] for sample in dataset])

    batch_size = args.batch_size

    correct = 0
    labels = {}
    for k in sorted([args.tokenizer.vocab[k] for k in args.answer_word_dict_inv]):
        labels[k] = len(labels)
    labels_inv = {v: k for k, v in labels.items()}
    confusion = torch.zeros(len(labels), len(labels), dtype=torch.long)
    args.model.eval()

    for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)):
        src_batch = src_batch.to(args.device)
        tgt_batch = tgt_batch.to(args.device)
        seg_batch = seg_batch.to(args.device)

        with torch.no_grad():
            _, pred, _ = args.model(src_batch, tgt_batch, seg_batch)
        gold = tgt_batch[tgt_batch > 0]
        for j in range(pred.size()[0]):
            pred[j] = labels_inv[int(pred[j])]
            confusion[labels[int(pred[j])], labels[int(gold[j])]] += 1
        correct += torch.sum(pred == gold).item()

    args.logger.debug("Confusion matrix:")
    args.logger.debug(confusion)
    args.logger.debug("Report precision, recall, and f1:")

    eps = 1e-9
    for i in range(confusion.size()[0]):
        p = confusion[i, i].item() / (confusion[i, :].sum().item() + eps)
        r = confusion[i, i].item() / (confusion[:, i].sum().item() + eps)
        f1 = 2 * p * r / (p + r + eps)
        args.logger.debug("Label {}: {:.3f}, {:.3f}, {:.3f}".format(i, p, r, f1))

    args.logger.info("Acc. (Correct/Total): {:.4f} ({}/{}) ".format(correct / len(dataset), correct, len(dataset)))
    return correct / len(dataset), confusion


def main():
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    tokenizer_opts(parser)
    finetune_opts(parser)

    parser.add_argument("--prompt_id", type=str, default="chnsenticorp_char")
    parser.add_argument("--prompt_path", type=str, default="models/prompts.json")

    args = parser.parse_args()

    # Load the hyperparameters from the config file.
    args = load_hyperparam(args)

    args.tokenizer = str2tokenizer[args.tokenizer](args)
    set_seed(args.seed)

    process_prompt_template(args)

    args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    answer_position = [0] * len(args.tokenizer.vocab)
    for answer in args.answer_word_dict_inv:
        answer_position[int(args.tokenizer.vocab[answer])] = 1
    args.answer_position = torch.LongTensor(answer_position)
    # Build classification model.
    model = ClozeTest(args)

    # Load or initialize parameters.
    load_or_initialize_parameters(args, model)

    # Get logger.
    args.logger = init_logger(args)

    model = model.to(args.device)

    # Training phase.
    trainset = read_dataset(args, args.train_path)

    instances_num = len(trainset)
    batch_size = args.batch_size

    args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1

    args.logger.info("Batch size: {}".format(batch_size))
    args.logger.info("The number of training instances: {}".format(instances_num))
    optimizer, scheduler = build_optimizer(args, model)

    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
        args.amp = amp

    if torch.cuda.device_count() > 1:
        args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
        model = torch.nn.DataParallel(model)
    args.model = model

    total_loss, result, best_result = 0.0, 0.0, 0.0

    args.logger.info("Start training.")
    for epoch in range(1, args.epochs_num + 1):
        random.shuffle(trainset)
        src = torch.LongTensor([example[0] for example in trainset])
        tgt = torch.LongTensor([example[1] for example in trainset])
        seg = torch.LongTensor([example[2] for example in trainset])

        model.train()
        for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg, None)):
            loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch)
            total_loss += loss.item()
            if (i + 1) % args.report_steps == 0:
                args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps))
                total_loss = 0.0

        result = evaluate(args, read_dataset(args, args.dev_path))
        if result[0] > best_result:
            best_result = result[0]
            save_model(model, args.output_model_path)

    # Evaluation phase.
    if args.epochs_num == 0:
        args.output_model_path = args.pretrained_model_path
    if args.test_path is not None:
        args.logger.info("Test set evaluation.")
        if torch.cuda.device_count() > 1:
            args.model.module.load_state_dict(torch.load(args.output_model_path), strict=False)
        else:
            args.model.load_state_dict(torch.load(args.output_model_path), strict=False)
        evaluate(args, read_dataset(args, args.test_path))


if __name__ == "__main__":
    main()