Spaces:
Runtime error
Runtime error
File size: 12,486 Bytes
7900c16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
"""
This script provides an example to use prompt for classification.
"""
import re
import sys
import os
import logging
import random
import argparse
import torch
import torch.nn as nn
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)
from finetune.run_classifier import *
from tencentpretrain.targets import *
class ClozeTest(nn.Module):
def __init__(self, args):
super(ClozeTest, self).__init__()
self.embedding = Embedding(args)
for embedding_name in args.embedding:
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab))
self.embedding.update(tmp_emb, embedding_name)
self.encoder = str2encoder[args.encoder](args)
self.target = MlmTarget(args, len(args.tokenizer.vocab))
if args.tie_weights:
self.target.mlm_linear_2.weight = self.embedding.word_embedding.weight
self.answer_position = args.answer_position
self.device = args.device
def forward(self, src, tgt, seg):
emb = self.embedding(src, seg)
memory_bank = self.encoder(emb, seg)
output_mlm = self.target.act(self.target.mlm_linear_1(memory_bank))
output_mlm = self.target.layer_norm(output_mlm)
tgt_mlm = tgt.contiguous().view(-1)
if self.target.factorized_embedding_parameterization:
output_mlm = output_mlm.contiguous().view(-1, self.target.emb_size)
else:
output_mlm = output_mlm.contiguous().view(-1, self.target.hidden_size)
output_mlm = output_mlm[tgt_mlm > 0, :]
tgt_mlm = tgt_mlm[tgt_mlm > 0]
self.answer_position = self.answer_position.to(self.device).view(-1)
logits = self.target.mlm_linear_2(output_mlm)
logits = logits * self.answer_position
prob = self.target.softmax(logits)
loss = self.target.criterion(prob, tgt_mlm)
pred = prob[:, self.answer_position > 0].argmax(dim=-1)
return loss, pred, logits
def read_dataset(args, path):
dataset, columns = [], {}
count, ignore_count = 0, 0
with open(path, mode="r", encoding="utf-8") as f:
for line_id, line in enumerate(f):
if line_id == 0:
for i, column_name in enumerate(line.rstrip("\r\n").split("\t")):
columns[column_name] = i
continue
line = line.rstrip("\r\n").split("\t")
mask_position = -1
label = args.answer_word_dict[str(line[columns["label"]])]
tgt_token_id = args.tokenizer.vocab[label]
src = [args.tokenizer.vocab.get(CLS_TOKEN)]
if "text_b" not in columns: # Sentence classification.
text_a = line[columns["text_a"]]
text_a_token_id = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_a))
max_length = args.seq_length - args.template_length - 2
text_a_token_id = text_a_token_id[:max_length]
for prompt_token in args.prompt_template:
if prompt_token == "[TEXT_A]":
src += text_a_token_id
elif prompt_token == "[ANS]":
src += [args.tokenizer.vocab.get(MASK_TOKEN)]
mask_position = len(src) - 1
else:
src += prompt_token
else: # Sentence-pair classification.
text_a, text_b = line[columns["text_a"]], line[columns["text_b"]]
text_a_token_id = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_a))
text_b_token_id = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_b))
max_length = args.seq_length - args.template_length - len(text_a_token_id) - 3
text_b_token_id = text_b_token_id[:max_length]
for prompt_token in args.prompt_template:
if prompt_token == "[TEXT_A]":
src += text_a_token_id
src += [args.tokenizer.vocab.get(SEP_TOKEN)]
elif prompt_token == "[ANS]":
src += [args.tokenizer.vocab.get(MASK_TOKEN)]
mask_position = len(src) - 1
elif prompt_token == "[TEXT_B]":
src += text_b_token_id
else:
src += prompt_token
src += [args.tokenizer.vocab.get(SEP_TOKEN)]
seg = [1] * len(src)
if len(src) > args.seq_length:
src = src[: args.seq_length]
seg = seg[: args.seq_length]
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0]
while len(src) < args.seq_length:
src.append(PAD_ID)
seg.append(0)
tgt = [0] * len(src)
# Ignore the sentence which the answer is not in a sequence
if mask_position >= args.seq_length:
ignore_count += 1
continue
tgt[mask_position] = tgt_token_id
count += 1
dataset.append((src, tgt, seg))
args.logger.info(f"read dataset, count:{count}, ignore_count:{ignore_count}")
return dataset
def train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch):
model.zero_grad()
src_batch = src_batch.to(args.device)
tgt_batch = tgt_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
loss, _, _ = model(src_batch, tgt_batch, seg_batch)
if torch.cuda.device_count() > 1:
loss = torch.mean(loss)
if args.fp16:
with args.amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
scheduler.step()
return loss
def process_prompt_template(args):
with open(args.prompt_path, "r", encoding="utf-8") as f_json:
temp_dict = json.load(f_json)
template_str = temp_dict[args.prompt_id]["template"]
template_list = re.split(r"(\[TEXT_B\]|\[TEXT_A\]|\[ANS\])", template_str)
args.prompt_template = []
template_length = 0
for term in template_list:
if len(term) > 0:
if term not in ["[TEXT_B]", "[TEXT_A]", "[ANS]"]:
term_tokens = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(term))
args.prompt_template.append(term_tokens)
template_length += len(term_tokens)
elif term in ["[TEXT_B]", "[TEXT_A]"]:
args.prompt_template.append(term)
else:
args.prompt_template.append(term)
template_length += 1
print(args.prompt_template)
args.answer_word_dict = temp_dict[args.prompt_id]["answer_words"]
args.answer_word_dict_inv = {v: k for k, v in args.answer_word_dict.items()}
args.template_length = template_length
def evaluate(args, dataset):
src = torch.LongTensor([sample[0] for sample in dataset])
tgt = torch.LongTensor([sample[1] for sample in dataset])
seg = torch.LongTensor([sample[2] for sample in dataset])
batch_size = args.batch_size
correct = 0
labels = {}
for k in sorted([args.tokenizer.vocab[k] for k in args.answer_word_dict_inv]):
labels[k] = len(labels)
labels_inv = {v: k for k, v in labels.items()}
confusion = torch.zeros(len(labels), len(labels), dtype=torch.long)
args.model.eval()
for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)):
src_batch = src_batch.to(args.device)
tgt_batch = tgt_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
with torch.no_grad():
_, pred, _ = args.model(src_batch, tgt_batch, seg_batch)
gold = tgt_batch[tgt_batch > 0]
for j in range(pred.size()[0]):
pred[j] = labels_inv[int(pred[j])]
confusion[labels[int(pred[j])], labels[int(gold[j])]] += 1
correct += torch.sum(pred == gold).item()
args.logger.debug("Confusion matrix:")
args.logger.debug(confusion)
args.logger.debug("Report precision, recall, and f1:")
eps = 1e-9
for i in range(confusion.size()[0]):
p = confusion[i, i].item() / (confusion[i, :].sum().item() + eps)
r = confusion[i, i].item() / (confusion[:, i].sum().item() + eps)
f1 = 2 * p * r / (p + r + eps)
args.logger.debug("Label {}: {:.3f}, {:.3f}, {:.3f}".format(i, p, r, f1))
args.logger.info("Acc. (Correct/Total): {:.4f} ({}/{}) ".format(correct / len(dataset), correct, len(dataset)))
return correct / len(dataset), confusion
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
tokenizer_opts(parser)
finetune_opts(parser)
parser.add_argument("--prompt_id", type=str, default="chnsenticorp_char")
parser.add_argument("--prompt_path", type=str, default="models/prompts.json")
args = parser.parse_args()
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
args.tokenizer = str2tokenizer[args.tokenizer](args)
set_seed(args.seed)
process_prompt_template(args)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
answer_position = [0] * len(args.tokenizer.vocab)
for answer in args.answer_word_dict_inv:
answer_position[int(args.tokenizer.vocab[answer])] = 1
args.answer_position = torch.LongTensor(answer_position)
# Build classification model.
model = ClozeTest(args)
# Load or initialize parameters.
load_or_initialize_parameters(args, model)
# Get logger.
args.logger = init_logger(args)
model = model.to(args.device)
# Training phase.
trainset = read_dataset(args, args.train_path)
instances_num = len(trainset)
batch_size = args.batch_size
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1
args.logger.info("Batch size: {}".format(batch_size))
args.logger.info("The number of training instances: {}".format(instances_num))
optimizer, scheduler = build_optimizer(args, model)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
args.amp = amp
if torch.cuda.device_count() > 1:
args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
args.model = model
total_loss, result, best_result = 0.0, 0.0, 0.0
args.logger.info("Start training.")
for epoch in range(1, args.epochs_num + 1):
random.shuffle(trainset)
src = torch.LongTensor([example[0] for example in trainset])
tgt = torch.LongTensor([example[1] for example in trainset])
seg = torch.LongTensor([example[2] for example in trainset])
model.train()
for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg, None)):
loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch)
total_loss += loss.item()
if (i + 1) % args.report_steps == 0:
args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps))
total_loss = 0.0
result = evaluate(args, read_dataset(args, args.dev_path))
if result[0] > best_result:
best_result = result[0]
save_model(model, args.output_model_path)
# Evaluation phase.
if args.epochs_num == 0:
args.output_model_path = args.pretrained_model_path
if args.test_path is not None:
args.logger.info("Test set evaluation.")
if torch.cuda.device_count() > 1:
args.model.module.load_state_dict(torch.load(args.output_model_path), strict=False)
else:
args.model.load_state_dict(torch.load(args.output_model_path), strict=False)
evaluate(args, read_dataset(args, args.test_path))
if __name__ == "__main__":
main()
|