File size: 7,199 Bytes
7900c16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"""
This script provides an example to wrap TencentPretrain for regression.
"""
import sys
import os
import random
import argparse
import torch
import torch.nn as nn

tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)

from finetune.run_classifier import *
from scipy.stats import spearmanr


class Regression(nn.Module):
    def __init__(self, args):
        super(Regression, self).__init__()
        self.embedding = Embedding(args)
        for embedding_name in args.embedding:
            tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab))
            self.embedding.update(tmp_emb, embedding_name)
        self.encoder = str2encoder[args.encoder](args)
        self.pooling_type = args.pooling
        self.output_layer_1 = nn.Linear(args.hidden_size, args.hidden_size)
        self.output_layer_2 = nn.Linear(args.hidden_size, 1)

    def forward(self, src, tgt, seg, soft_tgt=None):
        """
        Args:
            src: [batch_size x seq_length]
            tgt: [batch_size]
            seg: [batch_size x seq_length]
        """
        # Embedding.
        emb = self.embedding(src, seg)
        # Encoder.
        output = self.encoder(emb, seg)
        # Target.
        output = pooling(output, seg, self.pooling_type)
        output = torch.tanh(self.output_layer_1(output))
        logits = self.output_layer_2(output)
        if tgt is not None:
            loss = nn.MSELoss()(logits.view(-1), tgt.view(-1))
            return loss, logits
        else:
            return None, logits


def read_dataset(args, path):
    dataset, columns = [], {}
    with open(path, mode="r", encoding="utf-8") as f:
        for line_id, line in enumerate(f):
            if line_id == 0:
                for i, column_name in enumerate(line.rstrip("\r\n").split("\t")):
                    columns[column_name] = i
                continue
            line = line.rstrip("\r\n").split("\t")
            tgt = float(line[columns["label"]])
            if "text_b" not in columns:
                text_a = line[columns["text_a"]]
                src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN])
                seg = [1] * len(src)
            else:
                text_a, text_b = line[columns["text_a"]], line[columns["text_b"]]
                src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN])
                src_b = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_b) + [SEP_TOKEN])
                src = src_a + src_b
                seg = [1] * len(src_a) + [2] * len(src_b)

            if len(src) > args.seq_length:
                src = src[: args.seq_length]
                seg = seg[: args.seq_length]
            PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0]
            while len(src) < args.seq_length:
                src.append(PAD_ID)
                seg.append(0)
            dataset.append((src, tgt, seg))

    return dataset


def evaluate(args, dataset):
    src = torch.LongTensor([sample[0] for sample in dataset])
    tgt = torch.FloatTensor([sample[1] for sample in dataset])
    seg = torch.LongTensor([sample[2] for sample in dataset])
    pred_list = []
    gold_list = []
    batch_size = args.batch_size

    args.model.eval()

    for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)):
        src_batch = src_batch.to(args.device)
        tgt_batch = tgt_batch.to(args.device)
        seg_batch = seg_batch.to(args.device)
        with torch.no_grad():
            _, pred = args.model(src_batch, tgt_batch, seg_batch)
        gold = tgt_batch
        pred_list += pred.tolist()
        gold_list += gold.tolist()
    spearman_corr, _ = spearmanr(gold_list, pred_list)

    args.logger.info("Spearman corr: {:.4f}".format(spearman_corr))
    return spearman_corr


def main():
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    finetune_opts(parser)

    tokenizer_opts(parser)

    adv_opts(parser)

    args = parser.parse_args()

    # Load the hyperparameters from the config file.
    args = load_hyperparam(args)

    # Build tokenizer.
    args.tokenizer = str2tokenizer[args.tokenizer](args)
    set_seed(args.seed)

    model = Regression(args)

    # Load or initialize parameters.
    load_or_initialize_parameters(args, model)

    # Get logger.
    args.logger = init_logger(args)

    args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = model.to(args.device)

    # Training phase.
    trainset = read_dataset(args, args.train_path)
    instances_num = len(trainset)
    batch_size = args.batch_size

    args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1

    args.logger.info("Batch size: {}".format(batch_size))
    args.logger.info("The number of training instances: {}".format(instances_num))
    optimizer, scheduler = build_optimizer(args, model)

    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
        args.amp = amp

    if torch.cuda.device_count() > 1:
        args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
        model = torch.nn.DataParallel(model)
    args.model = model

    if args.use_adv:
        args.adv_method = str2adv[args.adv_type](model)

    total_loss, result, best_result = 0.0, 0.0, 0.0

    args.logger.info("Start training.")
    for epoch in range(1, args.epochs_num + 1):
        random.shuffle(trainset)
        src = torch.LongTensor([example[0] for example in trainset])
        tgt = torch.FloatTensor([example[1] for example in trainset])
        seg = torch.LongTensor([example[2] for example in trainset])

        model.train()
        for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg, None)):
            loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch, None)
            total_loss += loss.item()
            if (i + 1) % args.report_steps == 0:
                args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps))
                total_loss = 0.0

        result = evaluate(args, read_dataset(args, args.dev_path))
        if result > best_result:
            best_result = result
            save_model(model, args.output_model_path)

    # Evaluation phase.
    if args.test_path is not None:
        args.logger.info("Test set evaluation.")
        if torch.cuda.device_count() > 1:
            args.model.module.load_state_dict(torch.load(args.output_model_path))
        else:
            args.model.load_state_dict(torch.load(args.output_model_path))
        evaluate(args, read_dataset(args, args.test_path))


if __name__ == "__main__":
    main()