Spaces:
Runtime error
Runtime error
File size: 9,890 Bytes
7900c16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import argparse
import collections
import torch
def convert_transformer_encoder_from_huggingface_to_tencentpretrain(input_model, output_model, layers_num):
for i in range(layers_num):
output_model['encoder.transformer.' + str(i) + '.self_attn.linear_layers.0.weight'] = \
input_model['model.encoder.layers.' + str(i) + '.self_attn.q_proj.weight']
output_model['encoder.transformer.' + str(i) + '.self_attn.linear_layers.0.bias'] = \
input_model['model.encoder.layers.' + str(i) + '.self_attn.q_proj.bias']
output_model['encoder.transformer.' + str(i) + '.self_attn.linear_layers.1.weight'] = \
input_model['model.encoder.layers.' + str(i) + '.self_attn.k_proj.weight']
output_model['encoder.transformer.' + str(i) + '.self_attn.linear_layers.1.bias'] = \
input_model['model.encoder.layers.' + str(i) + '.self_attn.k_proj.bias']
output_model['encoder.transformer.' + str(i) + '.self_attn.linear_layers.2.weight'] = \
input_model['model.encoder.layers.' + str(i) + '.self_attn.v_proj.weight']
output_model['encoder.transformer.' + str(i) + '.self_attn.linear_layers.2.bias'] = \
input_model['model.encoder.layers.' + str(i) + '.self_attn.v_proj.bias']
output_model['encoder.transformer.' + str(i) + '.self_attn.final_linear.weight'] = \
input_model['model.encoder.layers.' + str(i) + '.self_attn.out_proj.weight']
output_model['encoder.transformer.' + str(i) + '.self_attn.final_linear.bias'] = \
input_model['model.encoder.layers.' + str(i) + '.self_attn.out_proj.bias']
output_model['encoder.transformer.' + str(i) + '.layer_norm_1.gamma'] = \
input_model['model.encoder.layers.' + str(i) + '.self_attn_layer_norm.weight']
output_model['encoder.transformer.' + str(i) + '.layer_norm_1.beta'] = \
input_model['model.encoder.layers.' + str(i) + '.self_attn_layer_norm.bias']
output_model['encoder.transformer.' + str(i) + '.feed_forward.linear_1.weight'] = \
input_model['model.encoder.layers.' + str(i) + '.fc1.weight']
output_model['encoder.transformer.' + str(i) + '.feed_forward.linear_1.bias'] = \
input_model['model.encoder.layers.' + str(i) + '.fc1.bias']
output_model['encoder.transformer.' + str(i) + '.feed_forward.linear_2.weight'] = \
input_model['model.encoder.layers.' + str(i) + '.fc2.weight']
output_model['encoder.transformer.' + str(i) + '.feed_forward.linear_2.bias'] = \
input_model['model.encoder.layers.' + str(i) + '.fc2.bias']
output_model['encoder.transformer.' + str(i) + '.layer_norm_2.gamma'] = \
input_model['model.encoder.layers.' + str(i) + '.final_layer_norm.weight']
output_model['encoder.transformer.' + str(i) + '.layer_norm_2.beta'] = \
input_model['model.encoder.layers.' + str(i) + '.final_layer_norm.bias']
def convert_transformer_decoder_from_huggingface_to_tencentpretrain(input_model, output_model, layers_num):
for i in range(layers_num):
output_model['decoder.transformer_decoder.' + str(i) + '.self_attn.linear_layers.0.weight'] = \
input_model['model.decoder.layers.' + str(i) + '.self_attn.q_proj.weight']
output_model['decoder.transformer_decoder.' + str(i) + '.self_attn.linear_layers.0.bias'] = \
input_model['model.decoder.layers.' + str(i) + '.self_attn.q_proj.bias']
output_model['decoder.transformer_decoder.' + str(i) + '.self_attn.linear_layers.1.weight'] = \
input_model['model.decoder.layers.' + str(i) + '.self_attn.k_proj.weight']
output_model['decoder.transformer_decoder.' + str(i) + '.self_attn.linear_layers.1.bias'] = \
input_model['model.decoder.layers.' + str(i) + '.self_attn.k_proj.bias']
output_model['decoder.transformer_decoder.' + str(i) + '.self_attn.linear_layers.2.weight'] = \
input_model['model.decoder.layers.' + str(i) + '.self_attn.v_proj.weight']
output_model['decoder.transformer_decoder.' + str(i) + '.self_attn.linear_layers.2.bias'] = \
input_model['model.decoder.layers.' + str(i) + '.self_attn.v_proj.bias']
output_model['decoder.transformer_decoder.' + str(i) + '.self_attn.final_linear.weight'] = \
input_model['model.decoder.layers.' + str(i) + '.self_attn.out_proj.weight']
output_model['decoder.transformer_decoder.' + str(i) + '.self_attn.final_linear.bias'] = \
input_model['model.decoder.layers.' + str(i) + '.self_attn.out_proj.bias']
output_model['decoder.transformer_decoder.' + str(i) + '.layer_norm_1.gamma'] = \
input_model['model.decoder.layers.' + str(i) + '.self_attn_layer_norm.weight']
output_model['decoder.transformer_decoder.' + str(i) + '.layer_norm_1.beta'] = \
input_model['model.decoder.layers.' + str(i) + '.self_attn_layer_norm.bias']
output_model['decoder.transformer_decoder.' + str(i) + '.context_attn.linear_layers.0.weight'] = \
input_model['model.decoder.layers.' + str(i) + '.encoder_attn.q_proj.weight']
output_model['decoder.transformer_decoder.' + str(i) + '.context_attn.linear_layers.0.bias'] = \
input_model['model.decoder.layers.' + str(i) + '.encoder_attn.q_proj.bias']
output_model['decoder.transformer_decoder.' + str(i) + '.context_attn.linear_layers.1.weight'] = \
input_model['model.decoder.layers.' + str(i) + '.encoder_attn.k_proj.weight']
output_model['decoder.transformer_decoder.' + str(i) + '.context_attn.linear_layers.1.bias'] = \
input_model['model.decoder.layers.' + str(i) + '.encoder_attn.k_proj.bias']
output_model['decoder.transformer_decoder.' + str(i) + '.context_attn.linear_layers.2.weight'] = \
input_model['model.decoder.layers.' + str(i) + '.encoder_attn.v_proj.weight']
output_model['decoder.transformer_decoder.' + str(i) + '.context_attn.linear_layers.2.bias'] = \
input_model['model.decoder.layers.' + str(i) + '.encoder_attn.v_proj.bias']
output_model['decoder.transformer_decoder.' + str(i) + '.context_attn.final_linear.weight'] = \
input_model['model.decoder.layers.' + str(i) + '.encoder_attn.out_proj.weight']
output_model['decoder.transformer_decoder.' + str(i) + '.context_attn.final_linear.bias'] = \
input_model['model.decoder.layers.' + str(i) + '.encoder_attn.out_proj.bias']
output_model['decoder.transformer_decoder.' + str(i) + '.layer_norm_2.gamma'] = \
input_model['model.decoder.layers.' + str(i) + '.encoder_attn_layer_norm.weight']
output_model['decoder.transformer_decoder.' + str(i) + '.layer_norm_2.beta'] = \
input_model['model.decoder.layers.' + str(i) + '.encoder_attn_layer_norm.bias']
output_model['decoder.transformer_decoder.' + str(i) + '.feed_forward.linear_1.weight'] = \
input_model['model.decoder.layers.' + str(i) + '.fc1.weight']
output_model['decoder.transformer_decoder.' + str(i) + '.feed_forward.linear_1.bias'] = \
input_model['model.decoder.layers.' + str(i) + '.fc1.bias']
output_model['decoder.transformer_decoder.' + str(i) + '.feed_forward.linear_2.weight'] = \
input_model['model.decoder.layers.' + str(i) + '.fc2.weight']
output_model['decoder.transformer_decoder.' + str(i) + '.feed_forward.linear_2.bias'] = \
input_model['model.decoder.layers.' + str(i) + '.fc2.bias']
output_model['decoder.transformer_decoder.' + str(i) + '.layer_norm_3.gamma'] = \
input_model['model.decoder.layers.' + str(i) + '.final_layer_norm.weight']
output_model['decoder.transformer_decoder.' + str(i) + '.layer_norm_3.beta'] = \
input_model['model.decoder.layers.' + str(i) + '.final_layer_norm.bias']
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--input_model_path", type=str, default="models/input_model.pt",
help=".")
parser.add_argument("--output_model_path", type=str, default="models/output_model.bin",
help=".")
parser.add_argument("--layers_num", type=int, default=12, help=".")
parser.add_argument("--decoder_layers_num", type=int, default=6, help=".")
args = parser.parse_args()
input_model = torch.load(args.input_model_path)
output_model = collections.OrderedDict()
for i in range(2):
output_model["embedding.speech.conv.conv_layers." + str(i) + ".0.weight"] = \
input_model["model.encoder.conv.conv_layers." + str(i) + ".weight"]
output_model["embedding.speech.conv.conv_layers." + str(i) + ".0.bias"] = \
input_model["model.encoder.conv.conv_layers." + str(i) + ".bias"]
output_model['tgt_embedding.word.embedding.weight'] = input_model['model.decoder.embed_tokens.weight']
convert_transformer_encoder_from_huggingface_to_tencentpretrain(input_model, output_model, args.layers_num)
convert_transformer_decoder_from_huggingface_to_tencentpretrain(input_model, output_model, args.decoder_layers_num)
output_model['encoder.layer_norm.gamma'] = input_model['model.encoder.layer_norm.weight']
output_model['encoder.layer_norm.beta'] = input_model['model.encoder.layer_norm.bias']
output_model['decoder.layer_norm.gamma'] = input_model['model.decoder.layer_norm.weight']
output_model['decoder.layer_norm.beta'] = input_model['model.decoder.layer_norm.bias']
output_model['target.lm.output_layer.weight'] = input_model["lm_head.weight"]
torch.save(output_model, args.output_model_path)
if __name__ == "__main__":
main()
|