File size: 8,762 Bytes
7900c16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import argparse
import collections
import torch
import json
import numpy as np
import random
from interval import Interval
from tqdm import tqdm

# [Annotation type] [Object centric or Multiple instances] [Number of instances] [Number of keypoints] [Class A, Class B, ...] [Box A, Box B, ...]

# ----- kinhane
def get_size(coordinate, type, small=Interval(0, 32**2), medium=Interval(32**2, 96**2, lower_closed=False)):

    if type == 'box':
        coordinate = np.array(coordinate)
        mean_area = np.mean((coordinate[:, 2] - coordinate[:, 0]) * (coordinate[:, 3] - coordinate[:, 1]))
        # import ipdb
        # ipdb.set_trace()
    elif type == 'keypoint' or type == 'mask':
        area_list = []
        for coord in coordinate:
            if type == 'mask':
                coord = np.array(coord).squeeze(1)
            else:
                # delete unannotated key points
                tmp = []
                for kpt in coord:
                    _, _, v = kpt
                    if v != 0:
                        tmp.append(kpt)
                coord = np.array(tmp)
            # import ipdb
            # ipdb.set_trace()
            area = (np.max(coord[:, 0]) - np.min(coord[:, 0])) * (np.max(coord[:, 1]) - np.min(coord[:, 1]))
            area_list.append(area)
        mean_area = np.mean(area_list)
    else:
        raise NotImplementedError

    if mean_area in small:
        return 'small'
    elif mean_area in medium:
        return 'medium'
    else:
        return 'large'

# ----- kinhane

def filter_keypoint(keypoints):
    output = []
    for kp_list in keypoints:
        output_single = []
        for kp in kp_list:
            for name, point in kp.items():
                if np.array(point).sum() > 0:
                    output_single.append({name: point})
        if len(output_single) > 0:
            output.append(output_single)
    return output


def keypoint_to_formular_data(keypoints):
    output = []
    for kp_list in tqdm(keypoints):
        random.shuffle(kp_list)
        output_single = {"anno_type": "key point",
                         "prefix": "Multiple instances",
                         "flag": None,
                         "instances_num": 0,
                         "keypoints_num": None,
                         "categories": [],
                         "coordinate": []
                         }
        for kp in kp_list:
            for name, point in kp.items():
                # ----- kinhane omit instances with less 3 key points
                if np.where(np.array(point)[:, -1] != 0)[0].shape[0] < 3:
                    continue
                # ----- kinhane
                output_single["instances_num"] += 1
                output_single["categories"].append(name)
                output_single["coordinate"].append(point)
                output_single["keypoints_num"] = len(point)

                if output_single["instances_num"] > 7:
                    break

        # ----- kinhane omit idle list
        if len(output_single["coordinate"]) == 0:
            continue
        # ----- kinhane

        if random.random() < 0.5:
            flag = get_size(output_single["coordinate"], type='keypoint')  # add by kinhane
        else:
            flag = "random"
        output_single["flag"] = flag  # add by kinhane
        output.append(output_single)

    return output


def mask_to_formular_data(keypoints):
    output = []
    for mask_list in tqdm(keypoints):
        point_counter = 0

        random.shuffle(keypoints)
        output_single = {"anno_type": "mask",
                         "prefix": "Multiple instances",
                         "flag": None,
                         "instances_num": 0,
                         "keypoints_num": 0,
                         "categories": [],
                         "coordinate": []
                         }
        for mask in mask_list:
            for name, point in mask.items():
                # ----- kinhane omit very small masks
                if len(point) < 5:
                    continue
                if point_counter + len(point) >= 150:
                    break
                else:
                    point_counter += len(point)

                # ----- kinhane
                output_single["categories"].append(name)
                output_single["coordinate"].append(point)
                output_single["instances_num"] += 1



        # ----- kinhane omit idle list
        if len(output_single["coordinate"]) == 0:
            continue
        # ----- kinhane

        flag = get_size(output_single["coordinate"], type='mask')  # add by kinhane
        output_single["flag"] = flag  # add by kinhane
        output.append(output_single)

    return output


def box_to_formular_data(keypoints, centric=0):
    output = []
    for mask_list in tqdm(keypoints):
        random.shuffle(mask_list)
        output_single = {"anno_type": "box",
                         "prefix": "multiple instances",
                         "flag": None,
                         "instances_num": 0,
                         "keypoints_num": 0,
                         "categories": [],
                         "coordinate": []
                         }
        if centric == 1:
            output_single["prefix"] = "object centric"
        for mask in mask_list[:20]:
            for name, point in mask.items():
                output_single["categories"].append(name)
                output_single["coordinate"].append(point)
                output_single["instances_num"] += 1

        flag = get_size(output_single["coordinate"], type='box')  # add by kinhane
        output_single["flag"] = flag  # add by kinhane
        output.append(output_single)

    return output

num2char = {0: 'a', 1: 'b', 2: 'c', 3: 'd', 4: 'e', 5: 'f', 6: 'g', 7: 'h', 8: 'i', 9: 'j',
            10: 'k', 11: 'l', 12: 'm', 13: 'n', 14: 'o', 15: 'p', 16: 'q', 17: 'r', 18: 's', 19: 't',
            20: 'u', 21: 'v', 22: 'w'}

def formular_data_to_str(data_list, type):

    def keyporint_coord_to_str(keypoints):
        output = ""
        for points_list in keypoints:
            output = output + '['
            for i, point in enumerate(points_list):
                output = output + ' ' + num2char[i] + ' $' + str(point[0]) + ' $'+ str(point[1])
            output = output + '] '
        return output

    def mask_coord_to_str(keypoints):
        output = ""
        for points_list in keypoints:
            output = output + '['
            for i, point in enumerate(points_list):
                output = output + ' ' + 'm'+str(i) + ' $' + str(point[0][0]) + ' $'+ str(point[0][1])
            output = output + '] '
        return output

    def box_coord_to_str(boxes):
        output = ""
        for box in boxes:
            output = output + '[ xmin $' + str(box[0]) + ' ymin $'+ str(box[1]) + \
                     ' xmax $'+ str(box[2]) + ' ymax $'+ str(box[3]) +'] '
        return output

    output = []
    for data in tqdm(data_list):
        output_single = '; '.join([data["anno_type"], data["prefix"], str(data["instances_num"]), str(data["keypoints_num"]), data['flag']])
        output_single = output_single + '; ' + ', '.join(data["categories"]) +'; '
        if type == "keypoint":
            output_single = output_single + keyporint_coord_to_str(data["coordinate"])
        elif type == "box":
            output_single = output_single + box_coord_to_str(data["coordinate"])
        else:
            output_single = output_single + mask_coord_to_str(data["coordinate"])
        output.append(output_single)

    return output

def main():
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument("--input_path", type=str, default='data/xjh_coco_val.json', help="data/xjh_coco_val.json")
    parser.add_argument("--output_path", type=str, default='test.txt', help="test.txt")
    parser.add_argument("--data_type", type=str, default='mask', help="box")
    parser.add_argument("--centric", type=int, default=0, help="box")

    args = parser.parse_args()

    with open(args.input_path) as f:
        data = json.load(f)

    print("data_type ", args.data_type)


    if args.data_type == "keypoint":
        keypoints = filter_keypoint(data['keypoints'] )
        data_json = keypoint_to_formular_data(keypoints)
    elif args.data_type == "box":
        data_json = box_to_formular_data(data['bboxes'], args.centric)
    else:
        data_json = mask_to_formular_data(data['masks'])

    data_str = formular_data_to_str(data_json, args.data_type)

    with open(args.output_path, 'w') as f:
        for l in data_str:
            f.write(l + '\n')


if __name__ == "__main__":
    main()