File size: 6,729 Bytes
7900c16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import torch
import torch.nn as nn
from tencentpretrain.utils.rope import precompute_freqs_cis
from tencentpretrain.layers.transformer import TransformerLayer
from tencentpretrain.layers.layer_norm import *
from tencentpretrain.layers.relative_position_embedding import RelativePositionEmbedding

class TransformerEncoder(nn.Module):
    """
    BERT encoder exploits 12 or 24 transformer layers to extract features.
    """
    def __init__(self, args):
        super(TransformerEncoder, self).__init__()
        self.mask = args.mask
        self.layers_num = args.layers_num
        self.parameter_sharing = args.parameter_sharing
        self.factorized_embedding_parameterization = args.factorized_embedding_parameterization
        self.layernorm_positioning = args.layernorm_positioning
        self.relative_position_embedding = args.relative_position_embedding
        self.rotary_position_embedding = args.rotary_position_embedding
        self.has_residual_attention = args.has_residual_attention
        if "deepspeed_checkpoint_activations" in args:
            self.deepspeed_checkpoint_activations = args.deepspeed_checkpoint_activations
            self.deepspeed_checkpoint_layers_num = args.deepspeed_checkpoint_layers_num
        else:
            self.deepspeed_checkpoint_activations = False

        has_bias = bool(1 - args.remove_transformer_bias)

        if self.factorized_embedding_parameterization:
            self.linear = nn.Linear(args.emb_size, args.hidden_size)

        if self.parameter_sharing:
            self.transformer = TransformerLayer(args)
        else:
            self.transformer = nn.ModuleList(
                [TransformerLayer(args) for _ in range(self.layers_num)]
            )
        if self.layernorm_positioning == "pre":
            if args.layernorm == "t5":
                self.layer_norm = T5LayerNorm(args.hidden_size)
            elif args.layernorm == "rms":
                self.layer_norm = RMSNorm(args.hidden_size)
            else:
                self.layer_norm = LayerNorm(args.hidden_size)

        if self.relative_position_embedding:
            self.relative_pos_emb = RelativePositionEmbedding(bidirectional=True, heads_num=args.heads_num,
                                                              num_buckets=args.relative_attention_buckets_num)
        elif self.rotary_position_embedding:
            self.freqs_cis = precompute_freqs_cis(args.hidden_size // args.heads_num, args.max_seq_length * 2)


    def forward(self, emb, seg):
        """
        Args:
            emb: [batch_size x seq_length x emb_size]
            seg: [batch_size x seq_length]
        Returns:
            hidden: [batch_size x seq_length x hidden_size]
        """
        if self.factorized_embedding_parameterization:
            emb = self.linear(emb)

        batch_size, seq_length, _ = emb.size()
        # Generate mask according to segment indicators.
        # mask: [batch_size x 1 x seq_length x seq_length]
        if self.mask == "fully_visible":
            mask = (seg > 0). \
                unsqueeze(1). \
                repeat(1, seq_length, 1). \
                unsqueeze(1)
            mask = mask.float()
            mask = (1.0 - mask) * -10000.0
        elif self.mask == "causal":
            mask = torch.ones(seq_length, seq_length, device=emb.device)
            mask = torch.tril(mask)
            mask = (1.0 - mask) * -10000
            mask = mask.repeat(batch_size, 1, 1, 1)
        else:
            mask_a = (seg == 1). \
                unsqueeze(1). \
                repeat(1, seq_length, 1). \
                unsqueeze(1).float()

            mask_b = (seg > 0). \
                unsqueeze(1). \
                repeat(1, seq_length, 1). \
                unsqueeze(1).float()

            mask_tril = torch.ones(seq_length, seq_length, device=emb.device)
            mask_tril = torch.tril(mask_tril)
            mask_tril = mask_tril.repeat(batch_size, 1, 1, 1)

            mask = (mask_a + mask_b + mask_tril >= 2).float()
            mask = (1.0 - mask) * -10000.0

        hidden = emb

        if self.relative_position_embedding:
            position_bias = self.relative_pos_emb(hidden, hidden)
        else:
            position_bias = None

        if self.rotary_position_embedding:
            freqs_cis = self.freqs_cis[:seq_length].to(hidden.device)
        else:
            freqs_cis = None

        prev_attn = None

        if self.deepspeed_checkpoint_activations:
            from deepspeed import checkpointing

            def custom(start, end):
                def custom_forward(*inputs):
                    x_, y_, position_bias_, freqs_cis_ = inputs
                    for index in range(start, end):
                        if self.parameter_sharing:
                            x_, y_ = self.transformer(x_, mask, position_bias=position_bias_,
                                                             has_residual_attention=self.has_residual_attention,
                                                             prev_attn=y_, freqs_cis=freqs_cis_)
                        else:
                            x_, y_ = self.transformer[index](x_, mask, position_bias=position_bias_,
                                                             has_residual_attention=self.has_residual_attention,
                                                             prev_attn=y_, freqs_cis=freqs_cis_)
                    return x_, y_

                return custom_forward
            l = 0
            while l < self.layers_num:
                hidden, prev_attn = checkpointing.checkpoint(custom(l, l + self.deepspeed_checkpoint_layers_num),
                                                             hidden, prev_attn, position_bias, freqs_cis)
                l += self.deepspeed_checkpoint_layers_num
        else:
            for i in range(self.layers_num):
                if self.parameter_sharing:
                    hidden, prev_attn = self.transformer(hidden, mask, position_bias=position_bias,
                                                         has_residual_attention=self.has_residual_attention,
                                                         prev_attn=prev_attn, freqs_cis=freqs_cis)
                else:
                    hidden, prev_attn = self.transformer[i](hidden, mask, position_bias=position_bias,
                                                            has_residual_attention=self.has_residual_attention,
                                                            prev_attn=prev_attn, freqs_cis=freqs_cis)

        if self.layernorm_positioning == "pre":
            return self.layer_norm(hidden)
        else:
            return hidden