Spaces:
Runtime error
Runtime error
File size: 13,521 Bytes
7900c16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
"""
decode sequential output to visual locations
author: sierkinhane.github.io
"""
import random
from tqdm import tqdm
import json
import numpy as np
import re
import argparse
import cv2
import math
import os
# COCO keypoints
stickwidth = 4
limbSeq_coco = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
[1, 16], [16, 18], [3, 17], [6, 18]]
limbSeq_cp = [[14, 2], [14, 1], [2, 4], [4, 6], [1, 3], [3, 5], [14, 8], [8, 10], [10, 12], [14, 7], [7, 9], [9, 11], [13, 14]]
# CrowdPose
# {'0': 'left shoulder', '1': 'right shoulder', '2': 'left elbow', '3': 'right elbow', '4': 'left wrist', '5': 'right wrist', '6': 'left hip', '7': 'right hip', '8': 'left knee', '9': 'right knee', '10': 'left ankle', '11': 'right ankle', '12': 'head', '13': 'neck'}
# for human pose visualization
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
# for box visualization
colors_box = [[217, 221, 116], [137, 165, 171], [230, 126, 175], [63, 157, 5], [107, 51, 75], [217, 147, 152], [129, 132, 8], [232, 85, 249], [254, 98, 33], [89, 108, 230], [253, 34, 161], [91, 150, 30], [255, 147, 26], [209, 154, 205], [134, 57, 11], [143, 181, 122], [241, 176, 87], [104, 73, 26], [122, 147, 59], [235, 230, 229], [119, 18, 125], [185, 61, 138], [237, 115, 90], [13, 209, 111], [219, 172, 212]]
# Plots one bounding box on image
def plot_one_box(x, img, color=None, label=None, line_thickness=None, idx=0):
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line thickness
color = color or [random.randint(0, 255) for _ in range(3)]
color = colors_box[idx]
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
cv2.rectangle(img, c1, c2, color, thickness=tl)
if label:
tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
cv2.rectangle(img, c1, c2, color, -1) # filled
cv2.putText(img, label, c1, 0, tl / 3, [0, 0, 0], thickness=tf, lineType=cv2.LINE_AA)
return img
# decode one sequence to visual locations
def decode(coordinate_str, type='box'):
# find numbers
locations = np.array([int(i) for i in re.findall(r"\d+", coordinate_str)])
if type == 'box':
locations = locations.reshape(-1, 4)
elif type == 'cocokeypoint':
locations = locations.reshape(-1, 18, 2)
visible = np.ones((locations.shape[0], 18, 1))
eq_0_idx = np.where(locations[:, :, 0] * locations[:, :, 1] == 0)
visible[eq_0_idx] = 0
locations = np.concatenate([locations, visible], axis=-1)
for i in range(locations.shape[0]):
if locations[i, 2, -1] == 0 or locations[i, 5, -1] == 0:
locations[i, 1, -1] = 0
elif type == 'crowdpose':
locations = locations.reshape(-1, 14, 2)
visible = np.ones((locations.shape[0], 14, 1))
eq_0_idx = np.where(locations[:, :, 0] * locations[:, :, 1] == 0)
visible[eq_0_idx] = 0
locations = np.concatenate([locations, visible], axis=-1)
elif type == 'mask':
locations = []
for c_str in coordinate_str.split('m0'):
c_str = ''.join(re.split(r'm\d+', c_str))
mask_coord = np.array([int(i) for i in re.findall(r"\d+ ", c_str)])
if len(mask_coord) != 0:
locations.append(mask_coord.reshape(-1, 1, 2))
else:
raise NotImplementedError
return locations
# process raw sequences inferred by VisorGPT
def to_coordinate(file_path, ctn=True):
if isinstance(file_path, list):
texts = [i.strip().replace(' ##', '') for i in file_path]
else:
with open(file_path, 'r') as file:
texts = [i.strip().replace(' ##', '') for i in file.readlines()]
location_list = []
classname_list = []
type_list = []
valid_sequences = []
cnt = 0
print('to coordinate ...')
for ste in tqdm(texts):
cnt += 1
if 'box' in ste:
type = 'box'
elif 'key point' in ste:
type = 'cocokeypoint' if '; 18 ;' in ste else 'crowdpose'
elif 'mask' in ste:
type = 'mask'
else:
raise NotImplementedError
if '[SEP]' not in ste:
continue
try:
if ctn:
temp = ste[:ste.index('[SEP]')].split(' ; ')[5].split('] ')
classnames = []
for t in temp:
classnames.append(t.split(' xmin ')[0].split(' m0')[0][2:])
classnames = classnames[:-1]
locations = decode(ste[:ste.index('[SEP]')].split(' ; ')[5], type=type)
else:
classnames = ste[:ste.index('[SEP]')].split(' ; ')[5].split(' , ')
locations = decode(ste[:ste.index('[SEP]')].split(' ; ')[6], type=type)
except:
pass
else:
valid_sequences.append(ste[:ste.index('[SEP]')])
location_list.append(locations)
classname_list.append(classnames)
type_list.append(type)
with open('valid_sequences.txt', 'w') as file:
[file.write(i.split('[CLS] ')[-1] + '\n') for i in valid_sequences]
return location_list, classname_list, type_list, valid_sequences
# visualize object locations on a canvas
def visualization(location_list, classname_list, type_list, save_dir='debug/', save_fig=False):
if save_fig:
if not os.path.exists(save_dir):
os.makedirs(save_dir)
print('visualizing ...')
for b, (loc, classnames, type) in tqdm(enumerate(zip(location_list, classname_list, type_list))):
canvas = np.zeros((512, 512, 3), dtype=np.uint8) + 50
if len(loc) != len(classnames):
continue
if type == 'box':
for i in range(loc.shape[0]):
canvas = plot_one_box(loc[i], canvas, label=classnames[i], idx=i)
elif type == 'cocokeypoint':
for i in range(loc.shape[0]):
for j in range(loc.shape[1]):
x, y, v = loc[i, j]
if v != 0:
cv2.circle(canvas, (int(x), int(y)), 4, colors[j], thickness=-1)
for j in range(17):
lim = limbSeq_coco[j]
cur_canvas = canvas.copy()
Y = [loc[i][lim[0] - 1][0], loc[i][lim[1] - 1][0]]
X = [loc[i][lim[0] - 1][1], loc[i][lim[1] - 1][1]]
if loc[i][lim[0] - 1][-1] == 0 or loc[i][lim[1] - 1][-1] == 0:
continue
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, colors[j])
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
elif type == 'crowdpose':
for i in range(loc.shape[0]):
for j in range(loc.shape[1]):
x, y, _ = loc[i, j]
if x != 0 and y != 0:
cv2.circle(canvas, (int(x), int(y)), 4, colors[j], thickness=-1)
for j in range(13):
lim = limbSeq_cp[j]
cur_canvas = canvas.copy()
Y = [loc[i][lim[0] - 1][0], loc[i][lim[1] - 1][0]]
X = [loc[i][lim[0] - 1][1], loc[i][lim[1] - 1][1]]
if (Y[0] == 0 and X[0] == 0) or (Y[1] == 0 and X[1] == 0):
continue
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, colors[j])
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
elif type == 'mask':
for i in range(len(loc)):
color = [random.randint(0, 255) for _ in range(3)]
xmin, ymin, xmax, ymax = loc[i][:, :, 0].min(), loc[i][:, :, 1].min(), loc[i][:, :, 0].max(), loc[i][:, :, 1].max()
cur_canvas = canvas.copy()
cv2.fillPoly(cur_canvas, [loc[i]], color)
cur_canvas = plot_one_box((xmin, ymin, xmax, ymax), cur_canvas, color=color, label=classnames[i])
canvas = cv2.addWeighted(canvas, 0.5, cur_canvas, 0.5, 0)
else:
raise NotImplementedError
if save_fig:
cv2.imwrite(f'{save_dir}/test_{b}.png', canvas[..., ::-1])
return canvas[..., ::-1]
# to json output
def to_json(location_list, classname_list, type_list, valid_sequences):
ret_json_box = {'bboxes': [], 'sequences': []}
ret_json_mask = {'masks': [], 'sequences': []}
ret_json_keypoint = {'keypoints': [], 'sequences': []}
print('to json ...')
for loc, classnames, type, seq in tqdm(zip(location_list, classname_list, type_list, valid_sequences)):
ins_list = []
kpt_list = []
mask_list = []
seq_list = []
if len(loc) != len(classnames):# or len(classnames) > 8:
continue
if type == 'box':
for i in range(loc.shape[0]):
# xmin, ymin, xmax, ymax = loc[i]
# area = (xmax - xmin) * (ymax - ymin)
# compute area and omit very small one due to the synthesis ability of AIGC
# if area < 32**2:
# continue
dic = {classnames[i]: loc[i].tolist()}
ins_list.append(dic)
if len(seq_list) == 0:
seq_list.append(seq)
elif type == 'cocokeypoint' or type == 'crowdpose':
for i in range(loc.shape[0]):
# compute validate key points and omit the less one, as the synthesis ability of AIGC
# if loc[i, :, -1].sum() <= 4:
# continue
# compute area and omit very small one due to the synthesis ability of AIGC
# xmin, ymin, xmax, ymax = loc[i, :, 0].min(), loc[i, :, 1].min(), loc[i, :, 0].max(), loc[i, :, 1].max()
# area = (xmax - xmin) * (ymax - ymin)
# if area < 32 ** 2:
# continue
dic = {classnames[i]: loc[i][:, :].tolist()}
kpt_list.append(dic)
if len(seq_list) == 0:
seq_list.append(seq)
elif type == 'mask':
for i in range(len(loc)):
# xmin, ymin, xmax, ymax = loc[i][:, :, 0].min(), loc[i][:, :, 1].min(), loc[i][:, :, 0].max(), loc[i][:, :, 1].max()
# area = (xmax - xmin) * (ymax - ymin)
# if area < 32 ** 2:
# continue
dic = {classnames[i]: loc[i].tolist()}
mask_list.append(dic)
if len(seq_list) == 0:
seq_list.append(seq)
else:
raise NotImplementedError
if len(ins_list) != 0:
ret_json_box['bboxes'].append(ins_list)
ret_json_box['sequences'].append(seq_list)
if len(kpt_list) != 0:
ret_json_keypoint['keypoints'].append(kpt_list)
ret_json_keypoint['sequences'].append(seq_list)
if len(mask_list) != 0:
ret_json_mask['masks'].append(mask_list)
ret_json_mask['sequences'].append(seq_list)
return [ret_json_box, ret_json_mask, ret_json_keypoint]
def gen_cond_mask(texts, ctn):
location_list, classname_list, type_list, valid_sequences = to_coordinate(texts, ctn)
ret_mask = visualization(location_list, classname_list, type_list, None, False)
ret_json = to_json(location_list, classname_list, type_list, valid_sequences)
return ret_mask, ret_json
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--file_path', type=str, required=True)
parser.add_argument('--save_dir', type=str, default='debug')
parser.add_argument('--visualize', type=bool, default=False)
args = parser.parse_args()
location_list, classname_list, type_list, valid_sequences = to_coordinate(args.file_path)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
# visualization
if args.visualize:
visualization(location_list, classname_list, type_list, args.save_dir)
# to json data
rets = to_json(location_list, classname_list, type_list, valid_sequences)
for ret, flag in zip(rets, ['box', 'mask', 'keypoint']):
save_path = args.file_path.split('/')[-1].split('.')[0] + f'_{flag}.json'
with open('files/' + save_path, 'w') as file:
json.dump(ret, file, indent=2)
|