Spaces:
Runtime error
Runtime error
File size: 7,519 Bytes
7900c16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
"""
This script provides an example to wrap TencentPretrain for C3 (a multiple choice dataset).
"""
import sys
import os
import argparse
import json
import random
import torch
import torch.nn as nn
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)
from tencentpretrain.embeddings import *
from tencentpretrain.encoders import *
from tencentpretrain.utils.constants import *
from tencentpretrain.utils import *
from tencentpretrain.utils.optimizers import *
from tencentpretrain.utils.config import load_hyperparam
from tencentpretrain.utils.seed import set_seed
from tencentpretrain.utils.logging import init_logger
from tencentpretrain.model_saver import save_model
from tencentpretrain.opts import finetune_opts, tokenizer_opts, adv_opts
from finetune.run_classifier import build_optimizer, load_or_initialize_parameters, train_model, batch_loader, evaluate
class MultipleChoice(nn.Module):
def __init__(self, args):
super(MultipleChoice, self).__init__()
self.embedding = Embedding(args)
for embedding_name in args.embedding:
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab))
self.embedding.update(tmp_emb, embedding_name)
self.encoder = str2encoder[args.encoder](args)
self.dropout = nn.Dropout(args.dropout)
self.output_layer = nn.Linear(args.hidden_size, 1)
def forward(self, src, tgt, seg, soft_tgt=None):
"""
Args:
src: [batch_size x choices_num x seq_length]
tgt: [batch_size]
seg: [batch_size x choices_num x seq_length]
"""
choices_num = src.shape[1]
src = src.view(-1, src.size(-1))
seg = seg.view(-1, seg.size(-1))
# Embedding.
emb = self.embedding(src, seg)
# Encoder.
output = self.encoder(emb, seg)
output = self.dropout(output)
logits = self.output_layer(output[:, 0, :])
reshaped_logits = logits.view(-1, choices_num)
if tgt is not None:
loss = nn.NLLLoss()(nn.LogSoftmax(dim=-1)(reshaped_logits), tgt.view(-1))
return loss, reshaped_logits
else:
return None, reshaped_logits
def read_dataset(args, path):
with open(path, mode="r", encoding="utf-8") as f:
data = json.load(f)
examples = []
for i in range(len(data)):
for j in range(len(data[i][1])):
example = ["\n".join(data[i][0]).lower(), data[i][1][j]["question"].lower()]
for k in range(len(data[i][1][j]["choice"])):
example += [data[i][1][j]["choice"][k].lower()]
for k in range(len(data[i][1][j]["choice"]), args.max_choices_num):
example += ["No Answer"]
example += [data[i][1][j].get("answer", "").lower()]
examples += [example]
dataset = []
for i, example in enumerate(examples):
tgt = 0
for k in range(args.max_choices_num):
if example[2 + k] == example[6]:
tgt = k
dataset.append(([], tgt, []))
for k in range(args.max_choices_num):
src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(example[k + 2]) + [SEP_TOKEN])
src_b = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(example[1]) + [SEP_TOKEN])
src_c = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(example[0]) + [SEP_TOKEN])
src = src_a + src_b + src_c
seg = [1] * (len(src_a) + len(src_b)) + [2] * len(src_c)
if len(src) > args.seq_length:
src = src[: args.seq_length]
seg = seg[: args.seq_length]
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0]
while len(src) < args.seq_length:
src.append(PAD_ID)
seg.append(0)
dataset[-1][0].append(src)
dataset[-1][2].append(seg)
return dataset
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
finetune_opts(parser)
parser.add_argument("--max_choices_num", default=4, type=int,
help="The maximum number of cadicate answer, shorter than this will be padded.")
tokenizer_opts(parser)
adv_opts(parser)
args = parser.parse_args()
args.labels_num = args.max_choices_num
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
set_seed(args.seed)
# Build tokenizer.
args.tokenizer = str2tokenizer[args.tokenizer](args)
# Build multiple choice model.
model = MultipleChoice(args)
# Load or initialize parameters.
load_or_initialize_parameters(args, model)
# Get logger.
args.logger = init_logger(args)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(args.device)
# Training phase.
trainset = read_dataset(args, args.train_path)
instances_num = len(trainset)
batch_size = args.batch_size
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1
args.logger.info("Batch size: {}".format(batch_size))
args.logger.info("The number of training instances: {}".format(instances_num))
optimizer, scheduler = build_optimizer(args, model)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
args.amp = amp
if torch.cuda.device_count() > 1:
args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
args.model = model
if args.use_adv:
args.adv_method = str2adv[args.adv_type](model)
total_loss, result, best_result = 0.0, 0.0, 0.0
args.logger.info("Start training.")
for epoch in range(1, args.epochs_num + 1):
random.shuffle(trainset)
src = torch.LongTensor([example[0] for example in trainset])
tgt = torch.LongTensor([example[1] for example in trainset])
seg = torch.LongTensor([example[2] for example in trainset])
model.train()
for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)):
loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch)
total_loss += loss.item()
if (i + 1) % args.report_steps == 0:
args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps))
total_loss = 0.0
result = evaluate(args, read_dataset(args, args.dev_path))
if result[0] > best_result:
best_result = result[0]
save_model(model, args.output_model_path)
# Evaluation phase.
if args.test_path is not None:
args.logger.info("Test set evaluation.")
if torch.cuda.device_count() > 1:
args.model.module.load_state_dict(torch.load(args.output_model_path))
else:
args.model.load_state_dict(torch.load(args.output_model_path))
evaluate(args, read_dataset(args, args.test_path))
if __name__ == "__main__":
main()
|