Spaces:
Runtime error
Runtime error
File size: 6,446 Bytes
7900c16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
"""
This script provides an example to wrap TencentPretrain for speech-to-text inference.
"""
import sys
import os
import tqdm
import argparse
import math
import torch
import torch.nn.functional as F
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)
from tencentpretrain.utils.constants import *
from tencentpretrain.utils import *
from tencentpretrain.utils.config import load_hyperparam
from tencentpretrain.model_loader import load_model
from tencentpretrain.opts import infer_opts, tokenizer_opts
from finetune.run_speech2text import Speech2text, read_dataset
from inference.run_classifier_infer import batch_loader
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
infer_opts(parser)
tokenizer_opts(parser)
parser.add_argument("--beam_width", type=int, default=10,
help="Beam width.")
parser.add_argument("--tgt_seq_length", type=int, default=100,
help="inference step.")
args = parser.parse_args()
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
# Build tokenizer.
args.tokenizer = str2tokenizer[args.tokenizer](args)
# Build s2t model.
model = Speech2text(args)
model = load_model(model, args.load_model_path)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(args.device)
if torch.cuda.device_count() > 1:
print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
dataset = read_dataset(args, args.test_path)
src_audio = torch.stack([sample[0] for sample in dataset], dim=0)
seg_audio = torch.LongTensor([sample[3] for sample in dataset])
batch_size = args.batch_size
beam_width=args.beam_width
instances_num = src_audio.size()[0]
tgt_seq_length = args.tgt_seq_length
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])
SEP_ID = args.tokenizer.convert_tokens_to_ids([SEP_TOKEN])
CLS_ID = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN])
print("The number of prediction instances: ", instances_num)
model.eval()
with open(args.prediction_path, mode="w", encoding="utf-8") as f:
for i, (src_batch, seg_batch) in tqdm.tqdm(enumerate(batch_loader(batch_size, src_audio, seg_audio))):
src_batch = src_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
seq_length = seg_batch.sum(dim=-1).max()
src_batch = src_batch[:,:seq_length * 4,:]
seg_batch = seg_batch[:,:seq_length]
tgt_in_batch = torch.zeros(src_batch.size()[0], 1, dtype = torch.long, device = args.device)
current_batch_size=tgt_in_batch.size()[0]
for j in range(current_batch_size):
tgt_in_batch[j][0] = torch.LongTensor(SEP_ID) #torch.LongTensor(CLS_ID) for tencentpretrain model
with torch.no_grad():
memory_bank, emb = model(src_batch, None, seg_batch, None, only_use_encoder=True)
step = 0
scores = torch.zeros(current_batch_size, beam_width, tgt_seq_length)
tokens = torch.zeros(current_batch_size, beam_width, tgt_seq_length+1, dtype = torch.long)
tokens[:,:,0] = torch.LongTensor(args.tokenizer.convert_tokens_to_ids([SEP_TOKEN])) #2
emb = emb.repeat(1, beam_width, 1).reshape(current_batch_size * beam_width, -1, int(args.conv_channels[-1] / 2)) #same batch nearby
memory_bank = memory_bank.repeat(1, beam_width, 1).reshape(current_batch_size * beam_width, -1, args.emb_size)
tgt_in_batch = tgt_in_batch.repeat(beam_width, 1)
while step < tgt_seq_length and step < seq_length:
with torch.no_grad():
outputs = model(emb, (tgt_in_batch, None, None), None, None, memory_bank=memory_bank)
vocab_size = outputs.shape[-1]
log_prob = F.log_softmax(outputs[:, -1, :], dim=-1) #(B*beam_size) * 1 * vocab_size
log_prob = log_prob.squeeze() #(B*beam_size) * vocab_size
log_prob[:,PAD_ID] = -math.inf # do not select pad
if step == 0:
log_prob[:,SEP_ID] = -math.inf # </s>
log_prob_beam = log_prob.reshape(current_batch_size, beam_width, -1) # B * beam * vocab_size
if step == 0:
log_prob_beam = log_prob_beam[:, ::beam_width, :].contiguous().to(scores.device)
else:
log_prob_beam = log_prob_beam.to(scores.device) + scores[:,:, step-1].unsqueeze(-1)
top_prediction_prob, top_prediction_indices = torch.topk(log_prob_beam.view(current_batch_size, -1), k=beam_width)
beams_buf = torch.div(top_prediction_indices, vocab_size).trunc().long()
beams_buf = beams_buf + torch.arange(current_batch_size).repeat(beam_width).reshape(beam_width,-1).transpose(0,1) * beam_width
top_prediction_indices = top_prediction_indices.fmod(vocab_size)
scores[:, :, step] = top_prediction_prob
tokens[:, :, step+1] = top_prediction_indices
if step > 0 and current_batch_size == 1:
tokens[:, :, :step+1] = torch.index_select(tokens, dim=1, index=beams_buf.squeeze())[:, :, :step+1]
elif step > 0:
tokens[:, :, step+1] = torch.index_select(tokens.reshape(-1,tokens.shape[2]), dim=0, index=beams_buf.reshape(-1)).reshape(current_batch_size, -1, tokens.shape[2])[:, :, step+1]
tgt_in_batch = tokens[:, :, :step+2].view(current_batch_size * beam_width, -1)
tgt_in_batch = tgt_in_batch.long().to(emb.device)
step = step + 1
for i in range(current_batch_size):
for j in range(1):
res = "".join([args.tokenizer.inv_vocab[token_id.item()] for token_id in tokens[i,j,:]])
res = res.split(SEP_TOKEN)[1].split(CLS_TOKEN)[0] # res.split(CLS_TOKEN)[1].split(SEP_TOKEN)[0] for tencentpretrain model
res = res.replace('▁',' ')
f.write(res)
f.write("\n")
if __name__ == "__main__":
main()
|