File size: 4,623 Bytes
7900c16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import warnings
import lightgbm as lgb
import numpy as np
from bayes_opt import BayesianOptimization
import argparse


def read_labels(dataset_path):
    with open(dataset_path, mode="r", encoding="utf-8") as f:
        columns, labels = {}, []
        for line_id, line in enumerate(f):
            if line_id == 0:
                for i, column_name in enumerate(line.rstrip("\r\n").split("\t")):
                    columns[column_name] = i
                continue
            line = line.rstrip("\r\n").split("\t")
            labels.append(int(line[columns["label"]]))
        return labels


def main():
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    # Path options.
    parser.add_argument("--train_path", type=str, required=True,
                        help="Path of the trainset.")
    parser.add_argument("--train_features_path", type=str, required=True,
                        help="Path of the train features for stacking.")

    # Model options.
    parser.add_argument("--models_num", type=int, default=64,
                        help="Number of models for ensemble.")
    parser.add_argument("--folds_num", type=int, default=5,
                        help="Number of folds for cross validation.")    
    parser.add_argument("--labels_num", type=int, default=2,
                        help="Number of labels.")

    # Bayesian optimization options.
    parser.add_argument("--epochs_num", type=int, default=100,
                        help="Number of epochs.")

    args = parser.parse_args()

    labels = read_labels(args.train_path)

    def lgb_cv(num_leaves, min_data_in_leaf, learning_rate, feature_fraction, lambda_l1, lambda_l2, max_depth):
        num_leaves = int(num_leaves)
        min_data_in_leaf = int(min_data_in_leaf)
        max_depth = int(max_depth)
     
        param = {
            "num_leaves": num_leaves,
            "min_data_in_leaf": min_data_in_leaf,
            "learning_rate": learning_rate,
            "feature_fraction": feature_fraction,
            "lambda_l1": lambda_l1,
            "lambda_l2": lambda_l2,
            "max_depth": max_depth,
            "save_binary": True,
            "objective": "multiclass",
            "num_class": args.labels_num,  
            "verbose": -1,
            "metric": "multi_error"
        }
        scores = []

        instances_num_per_fold = len(labels) // args.folds_num + 1

        for fold_id in range(args.folds_num):

            x_train = np.concatenate((train_features[0: fold_id * instances_num_per_fold], train_features[(fold_id + 1) * instances_num_per_fold:]), axis = 0)
            x_val = train_features[fold_id * instances_num_per_fold: (fold_id + 1) * instances_num_per_fold]
            y_train = labels[0: fold_id * instances_num_per_fold] + labels[(fold_id + 1) * instances_num_per_fold:]
            y_val = labels[fold_id * instances_num_per_fold: (fold_id + 1) * instances_num_per_fold]

            lgb_train = lgb.Dataset(x_train, y_train) 
            lgb_eval = lgb.Dataset(x_val, y_val, reference=lgb_train)  

            model = lgb.train(param, lgb_train, valid_sets=lgb_eval, verbose_eval=0)

            pred = model.predict(x_val)
            val_pred = np.argmax(pred, axis=1)

            confusion = np.zeros((args.labels_num, args.labels_num))

            for i in range(len(pred)):
                confusion[val_pred[i], y_val[i]] += 1
            correct = np.sum(val_pred == y_val)

            marco_f1 = []
            eps = 1e-9
            for i in range(args.labels_num):
                p = confusion[i, i].item() / (confusion[i, :].sum().item() + eps)
                r = confusion[i, i].item() / (confusion[:, i].sum().item() + eps)
                f1 = 2 * p * r / (p + r + eps)
                marco_f1.append(f1)
            scores.append(np.mean(marco_f1))
        
        return np.mean(scores)

    train_features = []
    for i in range(args.models_num):
        train_features.append(np.load(args.train_features_path + "train_features_" + str(i) + ".npy"))

    train_features = np.concatenate(train_features, axis=-1)
 
    bounds = {
        "num_leaves": (10, 100),
        "min_data_in_leaf": (10, 100),
        "learning_rate": (0.005, 0.5),
        "feature_fraction": (0.001, 0.5),
        "lambda_l1": (0, 10),
        "lambda_l2": (0, 10),
        "max_depth":(3, 200)
    }

    lgb_bo = BayesianOptimization(lgb_cv, bounds)
     
    with warnings.catch_warnings():
        warnings.filterwarnings('ignore')
        lgb_bo.maximize(n_iter=args.epochs_num)


if __name__ == "__main__":
    main()