Spaces:
Runtime error
Runtime error
| """ | |
| This script provides an example to wrap TencentPretrain for multi-task classification. | |
| """ | |
| import sys | |
| import os | |
| import random | |
| import argparse | |
| import torch | |
| import torch.nn as nn | |
| tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
| sys.path.append(tencentpretrain_dir) | |
| from tencentpretrain.embeddings import * | |
| from tencentpretrain.encoders import * | |
| from tencentpretrain.utils.constants import * | |
| from tencentpretrain.utils import * | |
| from tencentpretrain.utils.optimizers import * | |
| from tencentpretrain.utils.config import load_hyperparam | |
| from tencentpretrain.utils.seed import set_seed | |
| from tencentpretrain.utils.logging import init_logger | |
| from tencentpretrain.utils.misc import pooling | |
| from tencentpretrain.model_saver import save_model | |
| from tencentpretrain.opts import * | |
| from finetune.run_classifier import count_labels_num, batch_loader, build_optimizer, load_or_initialize_parameters, train_model, read_dataset, evaluate | |
| class MultitaskClassifier(nn.Module): | |
| def __init__(self, args): | |
| super(MultitaskClassifier, self).__init__() | |
| self.embedding = Embedding(args) | |
| for embedding_name in args.embedding: | |
| tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab)) | |
| self.embedding.update(tmp_emb, embedding_name) | |
| self.encoder = str2encoder[args.encoder](args) | |
| self.pooling_type = args.pooling | |
| self.output_layers_1 = nn.ModuleList([nn.Linear(args.hidden_size, args.hidden_size) for _ in args.labels_num_list]) | |
| self.output_layers_2 = nn.ModuleList([nn.Linear(args.hidden_size, labels_num) for labels_num in args.labels_num_list]) | |
| self.dataset_id = 0 | |
| def forward(self, src, tgt, seg, soft_tgt=None): | |
| """ | |
| Args: | |
| src: [batch_size x seq_length] | |
| tgt: [batch_size] | |
| seg: [batch_size x seq_length] | |
| """ | |
| # Embedding. | |
| emb = self.embedding(src, seg) | |
| # Encoder. | |
| output = self.encoder(emb, seg) | |
| # Target. | |
| output = pooling(output, seg, self.pooling_type) | |
| output = torch.tanh(self.output_layers_1[self.dataset_id](output)) | |
| logits = self.output_layers_2[self.dataset_id](output) | |
| if tgt is not None: | |
| loss = nn.NLLLoss()(nn.LogSoftmax(dim=-1)(logits), tgt.view(-1)) | |
| return loss, logits | |
| else: | |
| return None, logits | |
| def change_dataset(self, dataset_id): | |
| self.dataset_id = dataset_id | |
| def pack_dataset(dataset, dataset_id, batch_size): | |
| packed_dataset = [] | |
| src_batch, tgt_batch, seg_batch = [], [], [] | |
| for i, sample in enumerate(dataset): | |
| src_batch.append(sample[0]) | |
| tgt_batch.append(sample[1]) | |
| seg_batch.append(sample[2]) | |
| if (i + 1) % batch_size == 0: | |
| packed_dataset.append((dataset_id, torch.LongTensor(src_batch), torch.LongTensor(tgt_batch), torch.LongTensor(seg_batch))) | |
| src_batch, tgt_batch, seg_batch = [], [], [] | |
| continue | |
| if len(src_batch) > 0: | |
| packed_dataset.append((dataset_id, torch.LongTensor(src_batch), torch.LongTensor(tgt_batch), torch.LongTensor(seg_batch))) | |
| return packed_dataset | |
| def main(): | |
| parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
| # Path options. | |
| parser.add_argument("--pretrained_model_path", default=None, type=str, | |
| help="Path of the pretrained model.") | |
| parser.add_argument("--dataset_path_list", default=[], nargs='+', type=str, help="Dataset path list.") | |
| parser.add_argument("--output_model_path", default="models/multitask_classifier_model.bin", type=str, | |
| help="Path of the output model.") | |
| parser.add_argument("--config_path", default="models/bert/base_config.json", type=str, | |
| help="Path of the config file.") | |
| # Model options. | |
| model_opts(parser) | |
| # Tokenizer options. | |
| tokenizer_opts(parser) | |
| # Optimizer options. | |
| optimization_opts(parser) | |
| # Training options. | |
| training_opts(parser) | |
| adv_opts(parser) | |
| args = parser.parse_args() | |
| args.soft_targets = False | |
| # Load the hyperparameters from the config file. | |
| args = load_hyperparam(args) | |
| set_seed(args.seed) | |
| # Count the number of labels. | |
| args.labels_num_list = [count_labels_num(os.path.join(path, "train.tsv")) for path in args.dataset_path_list] | |
| args.datasets_num = len(args.dataset_path_list) | |
| # Build tokenizer. | |
| args.tokenizer = str2tokenizer[args.tokenizer](args) | |
| # Build multi-task classification model. | |
| model = MultitaskClassifier(args) | |
| # Load or initialize parameters. | |
| load_or_initialize_parameters(args, model) | |
| # Get logger. | |
| args.logger = init_logger(args) | |
| args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model = model.to(args.device) | |
| args.model = model | |
| if args.use_adv: | |
| args.adv_method = str2adv[args.adv_type](model) | |
| # Training phase. | |
| dataset_list = [read_dataset(args, os.path.join(path, "train.tsv")) for path in args.dataset_path_list] | |
| packed_dataset_list = [pack_dataset(dataset, i, args.batch_size) for i, dataset in enumerate(dataset_list)] | |
| packed_dataset_all = [] | |
| for packed_dataset in packed_dataset_list: | |
| packed_dataset_all += packed_dataset | |
| instances_num = sum([len(dataset) for dataset in dataset_list]) | |
| batch_size = args.batch_size | |
| args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1 | |
| args.logger.info("Batch size: {}".format(batch_size)) | |
| args.logger.info("The number of training instances: {}".format(instances_num)) | |
| optimizer, scheduler = build_optimizer(args, model) | |
| if args.fp16: | |
| try: | |
| from apex import amp | |
| except ImportError: | |
| raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") | |
| model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) | |
| args.amp = amp | |
| if torch.cuda.device_count() > 1: | |
| args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) | |
| model = torch.nn.DataParallel(model) | |
| total_loss, result, best_result = 0.0, 0.0, 0.0 | |
| args.logger.info("Start training.") | |
| for epoch in range(1, args.epochs_num + 1): | |
| random.shuffle(packed_dataset_all) | |
| model.train() | |
| for i, (dataset_id, src_batch, tgt_batch, seg_batch) in enumerate(packed_dataset_all): | |
| if hasattr(model, "module"): | |
| model.module.change_dataset(dataset_id) | |
| else: | |
| model.change_dataset(dataset_id) | |
| loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch, None) | |
| total_loss += loss.item() | |
| if (i + 1) % args.report_steps == 0: | |
| args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps)) | |
| total_loss = 0.0 | |
| for dataset_id, path in enumerate(args.dataset_path_list): | |
| args.labels_num = args.labels_num_list[dataset_id] | |
| if hasattr(model, "module"): | |
| model.module.change_dataset(dataset_id) | |
| else: | |
| model.change_dataset(dataset_id) | |
| result = evaluate(args, read_dataset(args, os.path.join(path, "dev.tsv"))) | |
| save_model(model, args.output_model_path) | |
| if __name__ == "__main__": | |
| main() | |