Spaces:
Runtime error
Runtime error
""" | |
This script provides an example to wrap TencentPretrain for SimCSE. | |
""" | |
import sys | |
import os | |
import random | |
import argparse | |
import math | |
import scipy.stats | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
sys.path.append(tencentpretrain_dir) | |
from tencentpretrain.embeddings import * | |
from tencentpretrain.encoders import * | |
from tencentpretrain.targets import * | |
from tencentpretrain.utils.vocab import Vocab | |
from tencentpretrain.utils.constants import * | |
from tencentpretrain.utils import * | |
from tencentpretrain.utils.optimizers import * | |
from tencentpretrain.utils.config import load_hyperparam | |
from tencentpretrain.utils.seed import set_seed | |
from tencentpretrain.utils.logging import init_logger | |
from tencentpretrain.model_saver import save_model | |
from tencentpretrain.opts import finetune_opts, tokenizer_opts | |
from finetune.run_classifier import count_labels_num, build_optimizer, load_or_initialize_parameters | |
from finetune.run_classifier_siamese import batch_loader | |
class SimCSE(nn.Module): | |
def __init__(self, args): | |
super(SimCSE, self).__init__() | |
self.embedding = Embedding(args) | |
for embedding_name in args.embedding: | |
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab)) | |
self.embedding.update(tmp_emb, embedding_name) | |
self.encoder = str2encoder[args.encoder](args) | |
self.pooling_type = args.pooling | |
def forward(self, src, seg): | |
""" | |
Args: | |
src: [batch_size x seq_length] | |
tgt: [batch_size] | |
seg: [batch_size x seq_length] | |
""" | |
# Embedding. | |
emb_0 = self.embedding(src[0], seg[0]) | |
emb_1 = self.embedding(src[1], seg[1]) | |
# Encoder. | |
output_0 = self.encoder(emb_0, seg[0]) | |
output_1 = self.encoder(emb_1, seg[1]) | |
# Target. | |
features_0 = self.pooling(output_0, seg[0], self.pooling_type) | |
features_1 = self.pooling(output_1, seg[1], self.pooling_type) | |
return features_0, features_1 | |
def pooling(self, memory_bank, seg, pooling_type): | |
seg = torch.unsqueeze(seg, dim=-1).type(torch.float) | |
memory_bank = memory_bank * seg | |
if pooling_type == "mean": | |
features = torch.sum(memory_bank, dim=1) | |
features = torch.div(features, torch.sum(seg, dim=1)) | |
elif pooling_type == "last": | |
features = memory_bank[torch.arange(memory_bank.shape[0]), torch.squeeze(torch.sum(seg, dim=1).type(torch.int64) - 1), :] | |
elif pooling_type == "max": | |
features = torch.max(memory_bank + (seg - 1) * sys.maxsize, dim=1)[0] | |
else: | |
features = memory_bank[:, 0, :] | |
return features | |
def read_dataset(args, path): | |
dataset, columns = [], {} | |
with open(path, mode="r", encoding="utf-8") as f: | |
for line_id, line in enumerate(f): | |
if line_id == 0: | |
for i, column_name in enumerate(line.rstrip("\r\n").split("\t")): | |
columns[column_name] = i | |
continue | |
line = line.rstrip("\r\n").split("\t") | |
if "text_b" in columns: | |
text_a, text_b = line[columns["text_a"]], line[columns["text_b"]] | |
else: | |
text_a = line[columns["text_a"]] | |
text_b = text_a | |
src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN]) | |
src_b = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_b) + [SEP_TOKEN]) | |
seg_a = [1] * len(src_a) | |
seg_b = [1] * len(src_b) | |
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0] | |
if len(src_a) >= args.seq_length: | |
src_a = src_a[:args.seq_length] | |
seg_a = seg_a[:args.seq_length] | |
while len(src_a) < args.seq_length: | |
src_a.append(PAD_ID) | |
seg_a.append(0) | |
if len(src_b) >= args.seq_length: | |
src_b = src_b[:args.seq_length] | |
seg_b = seg_b[:args.seq_length] | |
while len(src_b) < args.seq_length: | |
src_b.append(PAD_ID) | |
seg_b.append(0) | |
if "label" in columns: | |
tgt = float(line[columns["label"]]) | |
dataset.append(((src_a, src_b), tgt, (seg_a, seg_b))) | |
else: | |
dataset.append(((src_a, src_a), -1, (seg_a, seg_a))) | |
return dataset | |
def evaluate(args, dataset): | |
src_a = torch.LongTensor([example[0][0] for example in dataset]) | |
src_b = torch.LongTensor([example[0][1] for example in dataset]) | |
tgt = torch.FloatTensor([example[1] for example in dataset]) | |
seg_a = torch.LongTensor([example[2][0] for example in dataset]) | |
seg_b = torch.LongTensor([example[2][1] for example in dataset]) | |
all_similarities = [] | |
batch_size = args.batch_size | |
args.model.eval() | |
for i, (src_batch, tgt_batch, seg_batch) in enumerate(batch_loader(batch_size, (src_a, src_b), tgt, (seg_a, seg_b))): | |
src_a_batch, src_b_batch = src_batch | |
seg_a_batch, seg_b_batch = seg_batch | |
src_a_batch = src_a_batch.to(args.device) | |
src_b_batch = src_b_batch.to(args.device) | |
seg_a_batch = seg_a_batch.to(args.device) | |
seg_b_batch = seg_b_batch.to(args.device) | |
with torch.no_grad(): | |
features_0, features_1 = args.model((src_a_batch, src_b_batch), (seg_a_batch, seg_b_batch)) | |
similarity_matrix = similarity(features_0, features_1, 1) | |
for j in range(similarity_matrix.size(0)): | |
all_similarities.append(similarity_matrix[j][j].item()) | |
corrcoef = scipy.stats.spearmanr(tgt, all_similarities).correlation | |
args.logger.info("Spearman's correlation: {:.4f}".format(corrcoef)) | |
return corrcoef | |
def similarity(x, y, temperature): | |
x = x / x.norm(dim=-1, keepdim=True) | |
y = y / y.norm(dim=-1, keepdim=True) | |
return torch.matmul(x, y.transpose(-2, -1)) / temperature | |
def main(): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
finetune_opts(parser) | |
tokenizer_opts(parser) | |
parser.add_argument("--temperature", type=float, default=0.05) | |
parser.add_argument("--eval_steps", type=int, default=200, help="Evaluate frequency.") | |
args = parser.parse_args() | |
# Load the hyperparameters from the config file. | |
args = load_hyperparam(args) | |
set_seed(args.seed) | |
# Build tokenizer. | |
args.tokenizer = str2tokenizer[args.tokenizer](args) | |
# Build classification model. | |
model = SimCSE(args) | |
# Load or initialize parameters. | |
load_or_initialize_parameters(args, model) | |
# Get logger. | |
args.logger = init_logger(args) | |
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(args.device) | |
# Training phase. | |
trainset = read_dataset(args, args.train_path) | |
instances_num = len(trainset) | |
batch_size = args.batch_size | |
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1 | |
args.logger.info("Batch size: {}".format(batch_size)) | |
args.logger.info("The number of training instances: {}".format(instances_num)) | |
optimizer, scheduler = build_optimizer(args, model) | |
if args.fp16: | |
try: | |
from apex import amp | |
except ImportError: | |
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") | |
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) | |
args.amp = amp | |
if torch.cuda.device_count() > 1: | |
args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) | |
model = torch.nn.DataParallel(model) | |
args.model = model | |
total_loss, result, best_result = 0.0, 0.0, 0.0 | |
args.logger.info("Start training.") | |
for epoch in range(1, args.epochs_num + 1): | |
random.shuffle(trainset) | |
src_a = torch.LongTensor([example[0][0] for example in trainset]) | |
src_b = torch.LongTensor([example[0][1] for example in trainset]) | |
tgt = torch.FloatTensor([example[1] for example in trainset]) | |
seg_a = torch.LongTensor([example[2][0] for example in trainset]) | |
seg_b = torch.LongTensor([example[2][1] for example in trainset]) | |
model.train() | |
for i, (src_batch, tgt_batch, seg_batch) in enumerate(batch_loader(batch_size, (src_a, src_b), tgt, (seg_a, seg_b))): | |
model.zero_grad() | |
src_a_batch, src_b_batch = src_batch | |
seg_a_batch, seg_b_batch = seg_batch | |
src_a_batch = src_a_batch.to(args.device) | |
src_b_batch = src_b_batch.to(args.device) | |
seg_a_batch = seg_a_batch.to(args.device) | |
seg_b_batch = seg_b_batch.to(args.device) | |
features_0, features_1 = model((src_a_batch, src_b_batch), (seg_a_batch, seg_b_batch)) | |
similarity_matrix = similarity(features_0, features_1, args.temperature) | |
tgt_batch = torch.arange(similarity_matrix.size(0), device=similarity_matrix.device, dtype=torch.long) | |
loss = nn.CrossEntropyLoss()(similarity_matrix, tgt_batch) | |
if args.fp16: | |
with args.amp.scale_loss(loss, optimizer) as scaled_loss: | |
scaled_loss.backward() | |
else: | |
loss.backward() | |
optimizer.step() | |
scheduler.step() | |
total_loss += loss.item() | |
if (i + 1) % args.report_steps == 0: | |
args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}" | |
.format(epoch, i + 1, total_loss / args.report_steps)) | |
total_loss = 0.0 | |
if (i + 1) % args.eval_steps == 0 or (i + 1) == math.ceil(instances_num / batch_size): | |
result = evaluate(args, read_dataset(args, args.dev_path)) | |
args.logger.info("Epoch id: {}, Training steps: {}, Evaluate result: {}, Best result: {}" | |
.format(epoch, i + 1, result, best_result)) | |
if result > best_result: | |
best_result = result | |
save_model(model, args.output_model_path) | |
args.logger.info("It is the best model until now. Save it to {}".format(args.output_model_path)) | |
if __name__ == "__main__": | |
main() | |