VISOR-GPT / train /finetune /run_chid.py
szukevin's picture
upload
7900c16
raw
history blame
8.61 kB
"""
This script provides an example to wrap TencentPretrain for ChID (a multiple choice dataset).
"""
import sys
import os
import argparse
import json
import random
import torch
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)
from tencentpretrain.utils.constants import *
from tencentpretrain.utils.tokenizers import *
from tencentpretrain.utils.optimizers import *
from tencentpretrain.utils import *
from tencentpretrain.utils.config import load_hyperparam
from tencentpretrain.utils.seed import set_seed
from tencentpretrain.utils.logging import init_logger
from tencentpretrain.model_saver import save_model
from tencentpretrain.opts import finetune_opts, adv_opts
from finetune.run_c3 import MultipleChoice
from finetune.run_classifier import build_optimizer, load_or_initialize_parameters, train_model, batch_loader, evaluate
def tokenize_chid(text):
output = []
first_idiom = True
while True:
if first_idiom:
idiom_index = text.find("#idiom")
output.extend(text[:idiom_index])
output.append(text[idiom_index : idiom_index + 13])
pre_idiom_index = idiom_index
first_idiom = False
else:
if text[idiom_index + 1 :].find("#idiom") == -1:
output.extend(text[pre_idiom_index + 13 :])
break
else:
idiom_index = idiom_index + 1 + text[idiom_index + 1 :].find("#idiom")
output.extend(text[pre_idiom_index + 13 : idiom_index])
output.append(text[idiom_index : idiom_index + 13])
pre_idiom_index = idiom_index
return output
def add_tokens_around(tokens, idiom_index, tokens_num):
left_tokens_num = tokens_num // 2
right_tokens_num = tokens_num - left_tokens_num
if idiom_index >= left_tokens_num and (len(tokens) - 1 - idiom_index) >= right_tokens_num:
left_tokens = tokens[idiom_index - left_tokens_num : idiom_index]
right_tokens = tokens[idiom_index + 1 : idiom_index + 1 + right_tokens_num]
elif idiom_index < left_tokens_num:
left_tokens = tokens[:idiom_index]
right_tokens = tokens[idiom_index + 1 : idiom_index + 1 + tokens_num - len(left_tokens)]
elif (len(tokens) - 1 - idiom_index) < right_tokens_num:
right_tokens = tokens[idiom_index + 1 :]
left_tokens = tokens[idiom_index - (tokens_num - len(right_tokens)) : idiom_index]
return left_tokens, right_tokens
def read_dataset(args, data_path, answer_path):
if answer_path is not None:
answers = json.load(open(answer_path))
dataset = []
max_tokens_for_doc = args.seq_length - 3
group_index = 0
for line in open(data_path, mode="r", encoding="utf-8"):
example = json.loads(line)
options = example["candidates"]
for context in example["content"]:
chid_tokens = tokenize_chid(context)
tags = [token for token in chid_tokens if "#idiom" in token]
for tag in tags:
if answer_path is not None:
tgt = answers[tag]
else:
tgt = -1
tokens = []
for i, token in enumerate(chid_tokens):
if "#idiom" in token:
sub_tokens = [str(token)]
else:
sub_tokens = args.tokenizer.tokenize(token)
for sub_token in sub_tokens:
tokens.append(sub_token)
idiom_index = tokens.index(tag)
left_tokens, right_tokens = add_tokens_around(tokens, idiom_index, max_tokens_for_doc - 1)
for i in range(len(left_tokens)):
if "#idiom" in left_tokens[i] and left_tokens[i] != tag:
left_tokens[i] = MASK_TOKEN
for i in range(len(right_tokens)):
if "#idiom" in right_tokens[i] and right_tokens[i] != tag:
right_tokens[i] = MASK_TOKEN
dataset.append(([], tgt, [], tag, group_index))
for option in options:
option_tokens = args.tokenizer.tokenize(option)
tokens = [CLS_TOKEN] + option_tokens + [SEP_TOKEN] + left_tokens + [SEP_TOKEN] + right_tokens + [SEP_TOKEN]
src = args.tokenizer.convert_tokens_to_ids(tokens)[: args.seq_length]
seg = [0] * len(src)
while len(src) < args.seq_length:
src.append(0)
seg.append(0)
dataset[-1][0].append(src)
dataset[-1][2].append(seg)
while len(dataset[-1][0]) < args.max_choices_num:
dataset[-1][0].append([0] * args.seq_length)
dataset[-1][2].append([0] * args.seq_length)
group_index += 1
return dataset
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
finetune_opts(parser)
parser.add_argument("--vocab_path", default=None, type=str,
help="Path of the vocabulary file.")
parser.add_argument("--spm_model_path", default=None, type=str,
help="Path of the sentence piece model.")
parser.add_argument("--train_answer_path", type=str, required=True,
help="Path of the answers for trainset.")
parser.add_argument("--dev_answer_path", type=str, required=True,
help="Path of the answers for devset.")
parser.add_argument("--max_choices_num", default=10, type=int,
help="The maximum number of cadicate answer, shorter than this will be padded.")
adv_opts(parser)
args = parser.parse_args()
args.labels_num = args.max_choices_num
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
set_seed(args.seed)
# Build tokenizer.
args.tokenizer = CharTokenizer(args)
# Build multiple choice model.
model = MultipleChoice(args)
# Load or initialize parameters.
load_or_initialize_parameters(args, model)
# Get logger.
args.logger = init_logger(args)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(args.device)
# Training phase.
trainset = read_dataset(args, args.train_path, args.train_answer_path)
instances_num = len(trainset)
batch_size = args.batch_size
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1
args.logger.info("Batch size: {}".format(batch_size))
args.logger.info("The number of training instances: {}".format(instances_num))
optimizer, scheduler = build_optimizer(args, model)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
args.amp = amp
if torch.cuda.device_count() > 1:
args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
args.model = model
if args.use_adv:
args.adv_method = str2adv[args.adv_type](model)
total_loss, result, best_result = 0.0, 0.0, 0.0
args.logger.info("Start training.")
for epoch in range(1, args.epochs_num + 1):
random.shuffle(trainset)
src = torch.LongTensor([example[0] for example in trainset])
tgt = torch.LongTensor([example[1] for example in trainset])
seg = torch.LongTensor([example[2] for example in trainset])
model.train()
for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)):
loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch)
total_loss += loss.item()
if (i + 1) % args.report_steps == 0:
args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps))
total_loss = 0.0
result = evaluate(args, read_dataset(args, args.dev_path, args.dev_answer_path))
if result[0] > best_result:
best_result = result[0]
save_model(model, args.output_model_path)
if __name__ == "__main__":
main()