Spaces:
Runtime error
Runtime error
""" | |
This script provides an example to wrap TencentPretrain for multi-label classification. | |
""" | |
import sys | |
import os | |
import random | |
import argparse | |
import torch | |
import torch.nn as nn | |
import time | |
import datetime | |
import json | |
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
sys.path.append(tencentpretrain_dir) | |
from tencentpretrain.embeddings import * | |
from tencentpretrain.encoders import * | |
from tencentpretrain.utils.vocab import Vocab | |
from tencentpretrain.utils.constants import * | |
from tencentpretrain.utils import * | |
from tencentpretrain.utils.optimizers import * | |
from tencentpretrain.utils.config import load_hyperparam | |
from tencentpretrain.utils.seed import set_seed | |
from tencentpretrain.utils.logging import init_logger | |
from tencentpretrain.utils.misc import pooling | |
from tencentpretrain.model_saver import save_model | |
from tencentpretrain.opts import finetune_opts, tokenizer_opts, adv_opts | |
from finetune.run_classifier import load_or_initialize_parameters, build_optimizer, batch_loader | |
class MultilabelClassifier(nn.Module): | |
def __init__(self, args): | |
super(MultilabelClassifier, self).__init__() | |
self.embedding = Embedding(args) | |
for embedding_name in args.embedding: | |
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab)) | |
self.embedding.update(tmp_emb, embedding_name) | |
self.encoder = str2encoder[args.encoder](args) | |
self.labels_num = args.labels_num | |
self.pooling_type = args.pooling | |
self.output_layer_1 = nn.Linear(args.hidden_size, args.hidden_size) | |
self.output_layer_2 = nn.Linear(args.hidden_size, self.labels_num) | |
def forward(self, src, tgt, seg): | |
""" | |
Args: | |
src: [batch_size x seq_length] | |
tgt: [batch_size] | |
seg: [batch_size x seq_length] | |
""" | |
# Embedding. | |
emb = self.embedding(src, seg) | |
# Encoder. | |
output = self.encoder(emb, seg) | |
# Target. | |
output = pooling(output, seg, self.pooling_type) | |
output = torch.tanh(self.output_layer_1(output)) | |
logits = self.output_layer_2(output) | |
if tgt is not None: | |
probs_batch = nn.Sigmoid()(logits) | |
loss = nn.BCELoss()(probs_batch, tgt) | |
return loss, logits | |
else: | |
return None, logits | |
def count_labels_num(path): | |
labels_set, columns = set(), {} | |
with open(path, mode="r", encoding="utf-8") as f: | |
for line_id, line in enumerate(f): | |
if line_id == 0: | |
for i, column_name in enumerate(line.rstrip("\r\n").split("\t")): | |
columns[column_name] = i | |
continue | |
line = line.rstrip("\r\n").split("\t") | |
label = set(line[columns["label"]].split(",")) | |
labels_set |= label | |
return len(labels_set) | |
def read_dataset(args, path): | |
dataset, columns = [], {} | |
with open(path, mode="r", encoding="utf-8") as f: | |
for line_id, line in enumerate(f): | |
if line_id == 0: | |
for i, column_name in enumerate(line.rstrip("\r\n").split("\t")): | |
columns[column_name] = i | |
continue | |
line = line.rstrip("\r\n").split("\t") | |
tgt = [0] * args.labels_num | |
for idx in [int(_) for _ in line[columns["label"]].split(",")]: | |
tgt[idx] = 1 | |
if "text_b" not in columns: # Sentence classification. | |
text_a = line[columns["text_a"]] | |
src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN]) | |
seg = [1] * len(src) | |
else: # Sentence-pair classification. | |
text_a, text_b = line[columns["text_a"]], line[columns["text_b"]] | |
src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN]) | |
src_b = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_b) + [SEP_TOKEN]) | |
src = src_a + src_b | |
seg = [1] * len(src_a) + [2] * len(src_b) | |
if len(src) > args.seq_length: | |
src = src[: args.seq_length] | |
seg = seg[: args.seq_length] | |
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0] | |
while len(src) < args.seq_length: | |
src.append(PAD_ID) | |
seg.append(0) | |
dataset.append((src, tgt, seg)) | |
return dataset | |
def train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch): | |
model.zero_grad() | |
src_batch = src_batch.to(args.device) | |
tgt_batch = tgt_batch.to(args.device) | |
seg_batch = seg_batch.to(args.device) | |
loss, _ = model(src_batch, tgt_batch, seg_batch) | |
if torch.cuda.device_count() > 1: | |
loss = torch.mean(loss) | |
if args.fp16: | |
with args.amp.scale_loss(loss, optimizer) as scaled_loss: | |
scaled_loss.backward() | |
else: | |
loss.backward() | |
if args.use_adv and args.adv_type == "fgm": | |
args.adv_method.attack(epsilon=args.fgm_epsilon) | |
loss_adv, _ = model(src_batch, tgt_batch, seg_batch) | |
if torch.cuda.device_count() > 1: | |
loss_adv = torch.mean(loss_adv) | |
loss_adv.backward() | |
args.adv_method.restore() | |
if args.use_adv and args.adv_type == "pgd": | |
K = args.pgd_k | |
args.adv_method.backup_grad() | |
for t in range(K): | |
# apply the perturbation to embedding | |
args.adv_method.attack(epsilon=args.pgd_epsilon, alpha=args.pgd_alpha, | |
is_first_attack=(t == 0)) | |
if t != K - 1: | |
model.zero_grad() | |
else: | |
args.adv_method.restore_grad() | |
loss_adv, _ = model(src_batch, tgt_batch, seg_batch) | |
if torch.cuda.device_count() > 1: | |
loss_adv = torch.mean(loss_adv) | |
loss_adv.backward() | |
args.adv_method.restore() | |
optimizer.step() | |
scheduler.step() | |
return loss | |
def evaluate(args, dataset): | |
src = torch.LongTensor([sample[0] for sample in dataset]) | |
tgt = torch.tensor([sample[1] for sample in dataset], dtype=torch.float) | |
seg = torch.LongTensor([sample[2] for sample in dataset]) | |
batch_size = args.batch_size | |
correct = 0 | |
args.model.eval() | |
for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)): | |
src_batch = src_batch.to(args.device) | |
tgt_batch = tgt_batch.to(args.device) | |
seg_batch = seg_batch.to(args.device) | |
with torch.no_grad(): | |
_, logits = args.model(src_batch, tgt_batch, seg_batch) | |
probs_batch = nn.Sigmoid()(logits) | |
predict_label_batch = (probs_batch > 0.5).float() | |
gold = tgt_batch | |
for k in range(len(predict_label_batch)): | |
correct += predict_label_batch[k].equal(gold[k]) | |
args.logger.info("Acc. (Correct/Total): {:.4f} ({}/{}) ".format(correct / len(dataset), correct, len(dataset))) | |
return correct / len(dataset) | |
def main(): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
finetune_opts(parser) | |
tokenizer_opts(parser) | |
adv_opts(parser) | |
args = parser.parse_args() | |
# Load the hyperparameters from the config file. | |
args = load_hyperparam(args) | |
# Count the number of labels. | |
args.labels_num = count_labels_num(args.train_path) | |
# Build tokenizer. | |
args.tokenizer = str2tokenizer[args.tokenizer](args) | |
set_seed(args.seed) | |
# Build classification model. | |
model = MultilabelClassifier(args) | |
# Load or initialize parameters. | |
load_or_initialize_parameters(args, model) | |
# Get logger. | |
args.logger = init_logger(args) | |
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(args.device) | |
# Training phase. | |
trainset = read_dataset(args, args.train_path) | |
instances_num = len(trainset) | |
batch_size = args.batch_size | |
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1 | |
args.logger.info("Batch size: {}".format(batch_size)) | |
args.logger.info("The number of training instances: {}".format(instances_num)) | |
optimizer, scheduler = build_optimizer(args, model) | |
if args.fp16: | |
try: | |
from apex import amp | |
except ImportError: | |
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") | |
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) | |
args.amp = amp | |
if torch.cuda.device_count() > 1: | |
args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) | |
model = torch.nn.DataParallel(model) | |
args.model = model | |
if args.use_adv: | |
args.adv_method = str2adv[args.adv_type](model) | |
total_loss, result, best_result = 0.0, 0.0, 0.0 | |
args.logger.info("Start training.") | |
for epoch in range(1, args.epochs_num + 1): | |
random.shuffle(trainset) | |
src = torch.LongTensor([example[0] for example in trainset]) | |
tgt = torch.tensor([sample[1] for sample in trainset], dtype=torch.float) | |
seg = torch.LongTensor([example[2] for example in trainset]) | |
model.train() | |
for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)): | |
loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch) | |
total_loss += loss.item() | |
if (i + 1) % args.report_steps == 0: | |
args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps)) | |
total_loss = 0.0 | |
result = evaluate(args, read_dataset(args, args.dev_path)) | |
if result > best_result: | |
best_result = result | |
save_model(model, args.output_model_path) | |
# Evaluation phase. | |
if args.test_path is not None: | |
args.logger.info("Test set evaluation.") | |
if torch.cuda.device_count() > 1: | |
args.model.module.load_state_dict(torch.load(args.output_model_path)) | |
else: | |
args.model.load_state_dict(torch.load(args.output_model_path)) | |
evaluate(args, read_dataset(args, args.test_path)) | |
if __name__ == "__main__": | |
main() | |