VISOR-GPT / train /finetune /run_classifier_multi_label.py
szukevin's picture
upload
7900c16
raw
history blame
10.5 kB
"""
This script provides an example to wrap TencentPretrain for multi-label classification.
"""
import sys
import os
import random
import argparse
import torch
import torch.nn as nn
import time
import datetime
import json
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)
from tencentpretrain.embeddings import *
from tencentpretrain.encoders import *
from tencentpretrain.utils.vocab import Vocab
from tencentpretrain.utils.constants import *
from tencentpretrain.utils import *
from tencentpretrain.utils.optimizers import *
from tencentpretrain.utils.config import load_hyperparam
from tencentpretrain.utils.seed import set_seed
from tencentpretrain.utils.logging import init_logger
from tencentpretrain.utils.misc import pooling
from tencentpretrain.model_saver import save_model
from tencentpretrain.opts import finetune_opts, tokenizer_opts, adv_opts
from finetune.run_classifier import load_or_initialize_parameters, build_optimizer, batch_loader
class MultilabelClassifier(nn.Module):
def __init__(self, args):
super(MultilabelClassifier, self).__init__()
self.embedding = Embedding(args)
for embedding_name in args.embedding:
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab))
self.embedding.update(tmp_emb, embedding_name)
self.encoder = str2encoder[args.encoder](args)
self.labels_num = args.labels_num
self.pooling_type = args.pooling
self.output_layer_1 = nn.Linear(args.hidden_size, args.hidden_size)
self.output_layer_2 = nn.Linear(args.hidden_size, self.labels_num)
def forward(self, src, tgt, seg):
"""
Args:
src: [batch_size x seq_length]
tgt: [batch_size]
seg: [batch_size x seq_length]
"""
# Embedding.
emb = self.embedding(src, seg)
# Encoder.
output = self.encoder(emb, seg)
# Target.
output = pooling(output, seg, self.pooling_type)
output = torch.tanh(self.output_layer_1(output))
logits = self.output_layer_2(output)
if tgt is not None:
probs_batch = nn.Sigmoid()(logits)
loss = nn.BCELoss()(probs_batch, tgt)
return loss, logits
else:
return None, logits
def count_labels_num(path):
labels_set, columns = set(), {}
with open(path, mode="r", encoding="utf-8") as f:
for line_id, line in enumerate(f):
if line_id == 0:
for i, column_name in enumerate(line.rstrip("\r\n").split("\t")):
columns[column_name] = i
continue
line = line.rstrip("\r\n").split("\t")
label = set(line[columns["label"]].split(","))
labels_set |= label
return len(labels_set)
def read_dataset(args, path):
dataset, columns = [], {}
with open(path, mode="r", encoding="utf-8") as f:
for line_id, line in enumerate(f):
if line_id == 0:
for i, column_name in enumerate(line.rstrip("\r\n").split("\t")):
columns[column_name] = i
continue
line = line.rstrip("\r\n").split("\t")
tgt = [0] * args.labels_num
for idx in [int(_) for _ in line[columns["label"]].split(",")]:
tgt[idx] = 1
if "text_b" not in columns: # Sentence classification.
text_a = line[columns["text_a"]]
src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN])
seg = [1] * len(src)
else: # Sentence-pair classification.
text_a, text_b = line[columns["text_a"]], line[columns["text_b"]]
src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN])
src_b = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_b) + [SEP_TOKEN])
src = src_a + src_b
seg = [1] * len(src_a) + [2] * len(src_b)
if len(src) > args.seq_length:
src = src[: args.seq_length]
seg = seg[: args.seq_length]
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0]
while len(src) < args.seq_length:
src.append(PAD_ID)
seg.append(0)
dataset.append((src, tgt, seg))
return dataset
def train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch):
model.zero_grad()
src_batch = src_batch.to(args.device)
tgt_batch = tgt_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
loss, _ = model(src_batch, tgt_batch, seg_batch)
if torch.cuda.device_count() > 1:
loss = torch.mean(loss)
if args.fp16:
with args.amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
if args.use_adv and args.adv_type == "fgm":
args.adv_method.attack(epsilon=args.fgm_epsilon)
loss_adv, _ = model(src_batch, tgt_batch, seg_batch)
if torch.cuda.device_count() > 1:
loss_adv = torch.mean(loss_adv)
loss_adv.backward()
args.adv_method.restore()
if args.use_adv and args.adv_type == "pgd":
K = args.pgd_k
args.adv_method.backup_grad()
for t in range(K):
# apply the perturbation to embedding
args.adv_method.attack(epsilon=args.pgd_epsilon, alpha=args.pgd_alpha,
is_first_attack=(t == 0))
if t != K - 1:
model.zero_grad()
else:
args.adv_method.restore_grad()
loss_adv, _ = model(src_batch, tgt_batch, seg_batch)
if torch.cuda.device_count() > 1:
loss_adv = torch.mean(loss_adv)
loss_adv.backward()
args.adv_method.restore()
optimizer.step()
scheduler.step()
return loss
def evaluate(args, dataset):
src = torch.LongTensor([sample[0] for sample in dataset])
tgt = torch.tensor([sample[1] for sample in dataset], dtype=torch.float)
seg = torch.LongTensor([sample[2] for sample in dataset])
batch_size = args.batch_size
correct = 0
args.model.eval()
for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)):
src_batch = src_batch.to(args.device)
tgt_batch = tgt_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
with torch.no_grad():
_, logits = args.model(src_batch, tgt_batch, seg_batch)
probs_batch = nn.Sigmoid()(logits)
predict_label_batch = (probs_batch > 0.5).float()
gold = tgt_batch
for k in range(len(predict_label_batch)):
correct += predict_label_batch[k].equal(gold[k])
args.logger.info("Acc. (Correct/Total): {:.4f} ({}/{}) ".format(correct / len(dataset), correct, len(dataset)))
return correct / len(dataset)
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
finetune_opts(parser)
tokenizer_opts(parser)
adv_opts(parser)
args = parser.parse_args()
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
# Count the number of labels.
args.labels_num = count_labels_num(args.train_path)
# Build tokenizer.
args.tokenizer = str2tokenizer[args.tokenizer](args)
set_seed(args.seed)
# Build classification model.
model = MultilabelClassifier(args)
# Load or initialize parameters.
load_or_initialize_parameters(args, model)
# Get logger.
args.logger = init_logger(args)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(args.device)
# Training phase.
trainset = read_dataset(args, args.train_path)
instances_num = len(trainset)
batch_size = args.batch_size
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1
args.logger.info("Batch size: {}".format(batch_size))
args.logger.info("The number of training instances: {}".format(instances_num))
optimizer, scheduler = build_optimizer(args, model)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
args.amp = amp
if torch.cuda.device_count() > 1:
args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
args.model = model
if args.use_adv:
args.adv_method = str2adv[args.adv_type](model)
total_loss, result, best_result = 0.0, 0.0, 0.0
args.logger.info("Start training.")
for epoch in range(1, args.epochs_num + 1):
random.shuffle(trainset)
src = torch.LongTensor([example[0] for example in trainset])
tgt = torch.tensor([sample[1] for sample in trainset], dtype=torch.float)
seg = torch.LongTensor([example[2] for example in trainset])
model.train()
for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)):
loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch)
total_loss += loss.item()
if (i + 1) % args.report_steps == 0:
args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps))
total_loss = 0.0
result = evaluate(args, read_dataset(args, args.dev_path))
if result > best_result:
best_result = result
save_model(model, args.output_model_path)
# Evaluation phase.
if args.test_path is not None:
args.logger.info("Test set evaluation.")
if torch.cuda.device_count() > 1:
args.model.module.load_state_dict(torch.load(args.output_model_path))
else:
args.model.load_state_dict(torch.load(args.output_model_path))
evaluate(args, read_dataset(args, args.test_path))
if __name__ == "__main__":
main()