Spaces:
Runtime error
Runtime error
""" | |
This script provides an example to use prompt for classification. | |
""" | |
import re | |
import sys | |
import os | |
import logging | |
import random | |
import argparse | |
import torch | |
import torch.nn as nn | |
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
sys.path.append(tencentpretrain_dir) | |
from finetune.run_classifier import * | |
from tencentpretrain.targets import * | |
class ClozeTest(nn.Module): | |
def __init__(self, args): | |
super(ClozeTest, self).__init__() | |
self.embedding = Embedding(args) | |
for embedding_name in args.embedding: | |
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab)) | |
self.embedding.update(tmp_emb, embedding_name) | |
self.encoder = str2encoder[args.encoder](args) | |
self.target = MlmTarget(args, len(args.tokenizer.vocab)) | |
if args.tie_weights: | |
self.target.mlm_linear_2.weight = self.embedding.word_embedding.weight | |
self.answer_position = args.answer_position | |
self.device = args.device | |
def forward(self, src, tgt, seg): | |
emb = self.embedding(src, seg) | |
memory_bank = self.encoder(emb, seg) | |
output_mlm = self.target.act(self.target.mlm_linear_1(memory_bank)) | |
output_mlm = self.target.layer_norm(output_mlm) | |
tgt_mlm = tgt.contiguous().view(-1) | |
if self.target.factorized_embedding_parameterization: | |
output_mlm = output_mlm.contiguous().view(-1, self.target.emb_size) | |
else: | |
output_mlm = output_mlm.contiguous().view(-1, self.target.hidden_size) | |
output_mlm = output_mlm[tgt_mlm > 0, :] | |
tgt_mlm = tgt_mlm[tgt_mlm > 0] | |
self.answer_position = self.answer_position.to(self.device).view(-1) | |
logits = self.target.mlm_linear_2(output_mlm) | |
logits = logits * self.answer_position | |
prob = self.target.softmax(logits) | |
loss = self.target.criterion(prob, tgt_mlm) | |
pred = prob[:, self.answer_position > 0].argmax(dim=-1) | |
return loss, pred, logits | |
def read_dataset(args, path): | |
dataset, columns = [], {} | |
count, ignore_count = 0, 0 | |
with open(path, mode="r", encoding="utf-8") as f: | |
for line_id, line in enumerate(f): | |
if line_id == 0: | |
for i, column_name in enumerate(line.rstrip("\r\n").split("\t")): | |
columns[column_name] = i | |
continue | |
line = line.rstrip("\r\n").split("\t") | |
mask_position = -1 | |
label = args.answer_word_dict[str(line[columns["label"]])] | |
tgt_token_id = args.tokenizer.vocab[label] | |
src = [args.tokenizer.vocab.get(CLS_TOKEN)] | |
if "text_b" not in columns: # Sentence classification. | |
text_a = line[columns["text_a"]] | |
text_a_token_id = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_a)) | |
max_length = args.seq_length - args.template_length - 2 | |
text_a_token_id = text_a_token_id[:max_length] | |
for prompt_token in args.prompt_template: | |
if prompt_token == "[TEXT_A]": | |
src += text_a_token_id | |
elif prompt_token == "[ANS]": | |
src += [args.tokenizer.vocab.get(MASK_TOKEN)] | |
mask_position = len(src) - 1 | |
else: | |
src += prompt_token | |
else: # Sentence-pair classification. | |
text_a, text_b = line[columns["text_a"]], line[columns["text_b"]] | |
text_a_token_id = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_a)) | |
text_b_token_id = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_b)) | |
max_length = args.seq_length - args.template_length - len(text_a_token_id) - 3 | |
text_b_token_id = text_b_token_id[:max_length] | |
for prompt_token in args.prompt_template: | |
if prompt_token == "[TEXT_A]": | |
src += text_a_token_id | |
src += [args.tokenizer.vocab.get(SEP_TOKEN)] | |
elif prompt_token == "[ANS]": | |
src += [args.tokenizer.vocab.get(MASK_TOKEN)] | |
mask_position = len(src) - 1 | |
elif prompt_token == "[TEXT_B]": | |
src += text_b_token_id | |
else: | |
src += prompt_token | |
src += [args.tokenizer.vocab.get(SEP_TOKEN)] | |
seg = [1] * len(src) | |
if len(src) > args.seq_length: | |
src = src[: args.seq_length] | |
seg = seg[: args.seq_length] | |
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0] | |
while len(src) < args.seq_length: | |
src.append(PAD_ID) | |
seg.append(0) | |
tgt = [0] * len(src) | |
# Ignore the sentence which the answer is not in a sequence | |
if mask_position >= args.seq_length: | |
ignore_count += 1 | |
continue | |
tgt[mask_position] = tgt_token_id | |
count += 1 | |
dataset.append((src, tgt, seg)) | |
args.logger.info(f"read dataset, count:{count}, ignore_count:{ignore_count}") | |
return dataset | |
def train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch): | |
model.zero_grad() | |
src_batch = src_batch.to(args.device) | |
tgt_batch = tgt_batch.to(args.device) | |
seg_batch = seg_batch.to(args.device) | |
loss, _, _ = model(src_batch, tgt_batch, seg_batch) | |
if torch.cuda.device_count() > 1: | |
loss = torch.mean(loss) | |
if args.fp16: | |
with args.amp.scale_loss(loss, optimizer) as scaled_loss: | |
scaled_loss.backward() | |
else: | |
loss.backward() | |
optimizer.step() | |
scheduler.step() | |
return loss | |
def process_prompt_template(args): | |
with open(args.prompt_path, "r", encoding="utf-8") as f_json: | |
temp_dict = json.load(f_json) | |
template_str = temp_dict[args.prompt_id]["template"] | |
template_list = re.split(r"(\[TEXT_B\]|\[TEXT_A\]|\[ANS\])", template_str) | |
args.prompt_template = [] | |
template_length = 0 | |
for term in template_list: | |
if len(term) > 0: | |
if term not in ["[TEXT_B]", "[TEXT_A]", "[ANS]"]: | |
term_tokens = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(term)) | |
args.prompt_template.append(term_tokens) | |
template_length += len(term_tokens) | |
elif term in ["[TEXT_B]", "[TEXT_A]"]: | |
args.prompt_template.append(term) | |
else: | |
args.prompt_template.append(term) | |
template_length += 1 | |
print(args.prompt_template) | |
args.answer_word_dict = temp_dict[args.prompt_id]["answer_words"] | |
args.answer_word_dict_inv = {v: k for k, v in args.answer_word_dict.items()} | |
args.template_length = template_length | |
def evaluate(args, dataset): | |
src = torch.LongTensor([sample[0] for sample in dataset]) | |
tgt = torch.LongTensor([sample[1] for sample in dataset]) | |
seg = torch.LongTensor([sample[2] for sample in dataset]) | |
batch_size = args.batch_size | |
correct = 0 | |
labels = {} | |
for k in sorted([args.tokenizer.vocab[k] for k in args.answer_word_dict_inv]): | |
labels[k] = len(labels) | |
labels_inv = {v: k for k, v in labels.items()} | |
confusion = torch.zeros(len(labels), len(labels), dtype=torch.long) | |
args.model.eval() | |
for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)): | |
src_batch = src_batch.to(args.device) | |
tgt_batch = tgt_batch.to(args.device) | |
seg_batch = seg_batch.to(args.device) | |
with torch.no_grad(): | |
_, pred, _ = args.model(src_batch, tgt_batch, seg_batch) | |
gold = tgt_batch[tgt_batch > 0] | |
for j in range(pred.size()[0]): | |
pred[j] = labels_inv[int(pred[j])] | |
confusion[labels[int(pred[j])], labels[int(gold[j])]] += 1 | |
correct += torch.sum(pred == gold).item() | |
args.logger.debug("Confusion matrix:") | |
args.logger.debug(confusion) | |
args.logger.debug("Report precision, recall, and f1:") | |
eps = 1e-9 | |
for i in range(confusion.size()[0]): | |
p = confusion[i, i].item() / (confusion[i, :].sum().item() + eps) | |
r = confusion[i, i].item() / (confusion[:, i].sum().item() + eps) | |
f1 = 2 * p * r / (p + r + eps) | |
args.logger.debug("Label {}: {:.3f}, {:.3f}, {:.3f}".format(i, p, r, f1)) | |
args.logger.info("Acc. (Correct/Total): {:.4f} ({}/{}) ".format(correct / len(dataset), correct, len(dataset))) | |
return correct / len(dataset), confusion | |
def main(): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
tokenizer_opts(parser) | |
finetune_opts(parser) | |
parser.add_argument("--prompt_id", type=str, default="chnsenticorp_char") | |
parser.add_argument("--prompt_path", type=str, default="models/prompts.json") | |
args = parser.parse_args() | |
# Load the hyperparameters from the config file. | |
args = load_hyperparam(args) | |
args.tokenizer = str2tokenizer[args.tokenizer](args) | |
set_seed(args.seed) | |
process_prompt_template(args) | |
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
answer_position = [0] * len(args.tokenizer.vocab) | |
for answer in args.answer_word_dict_inv: | |
answer_position[int(args.tokenizer.vocab[answer])] = 1 | |
args.answer_position = torch.LongTensor(answer_position) | |
# Build classification model. | |
model = ClozeTest(args) | |
# Load or initialize parameters. | |
load_or_initialize_parameters(args, model) | |
# Get logger. | |
args.logger = init_logger(args) | |
model = model.to(args.device) | |
# Training phase. | |
trainset = read_dataset(args, args.train_path) | |
instances_num = len(trainset) | |
batch_size = args.batch_size | |
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1 | |
args.logger.info("Batch size: {}".format(batch_size)) | |
args.logger.info("The number of training instances: {}".format(instances_num)) | |
optimizer, scheduler = build_optimizer(args, model) | |
if args.fp16: | |
try: | |
from apex import amp | |
except ImportError: | |
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") | |
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) | |
args.amp = amp | |
if torch.cuda.device_count() > 1: | |
args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) | |
model = torch.nn.DataParallel(model) | |
args.model = model | |
total_loss, result, best_result = 0.0, 0.0, 0.0 | |
args.logger.info("Start training.") | |
for epoch in range(1, args.epochs_num + 1): | |
random.shuffle(trainset) | |
src = torch.LongTensor([example[0] for example in trainset]) | |
tgt = torch.LongTensor([example[1] for example in trainset]) | |
seg = torch.LongTensor([example[2] for example in trainset]) | |
model.train() | |
for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg, None)): | |
loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch) | |
total_loss += loss.item() | |
if (i + 1) % args.report_steps == 0: | |
args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps)) | |
total_loss = 0.0 | |
result = evaluate(args, read_dataset(args, args.dev_path)) | |
if result[0] > best_result: | |
best_result = result[0] | |
save_model(model, args.output_model_path) | |
# Evaluation phase. | |
if args.epochs_num == 0: | |
args.output_model_path = args.pretrained_model_path | |
if args.test_path is not None: | |
args.logger.info("Test set evaluation.") | |
if torch.cuda.device_count() > 1: | |
args.model.module.load_state_dict(torch.load(args.output_model_path), strict=False) | |
else: | |
args.model.load_state_dict(torch.load(args.output_model_path), strict=False) | |
evaluate(args, read_dataset(args, args.test_path)) | |
if __name__ == "__main__": | |
main() | |