Spaces:
Runtime error
Runtime error
""" | |
This script provides an example to wrap TencentPretrain for Chinese machine reading comprehension. | |
""" | |
import sys | |
import os | |
import re | |
import argparse | |
import json | |
import random | |
import torch | |
import torch.nn as nn | |
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
sys.path.append(tencentpretrain_dir) | |
from tencentpretrain.embeddings import * | |
from tencentpretrain.encoders import * | |
from tencentpretrain.utils.constants import * | |
from tencentpretrain.utils.tokenizers import * | |
from tencentpretrain.utils.optimizers import * | |
from tencentpretrain.utils.config import load_hyperparam | |
from tencentpretrain.utils.seed import set_seed | |
from tencentpretrain.utils.logging import init_logger | |
from tencentpretrain.model_saver import save_model | |
from tencentpretrain.opts import finetune_opts | |
from finetune.run_classifier import build_optimizer, load_or_initialize_parameters | |
class MachineReadingComprehension(nn.Module): | |
def __init__(self, args): | |
super(MachineReadingComprehension, self).__init__() | |
self.embedding = Embedding(args) | |
for embedding_name in args.embedding: | |
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab)) | |
self.embedding.update(tmp_emb, embedding_name) | |
self.encoder = str2encoder[args.encoder](args) | |
self.output_layer = nn.Linear(args.hidden_size, 2) | |
def forward(self, src, seg, start_position, end_position): | |
# Embedding. | |
emb = self.embedding(src, seg) | |
# Encoder. | |
output = self.encoder(emb, seg) | |
# Target. | |
logits = self.output_layer(output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits, end_logits = start_logits.squeeze(-1), end_logits.squeeze(-1) | |
start_loss = nn.NLLLoss()(nn.LogSoftmax(dim=-1)(start_logits), start_position) | |
end_loss = nn.NLLLoss()(nn.LogSoftmax(dim=-1)(end_logits), end_position) | |
loss = (start_loss + end_loss) / 2 | |
return loss, start_logits, end_logits | |
def read_examples(path): | |
# Read squad-style examples. | |
examples = [] | |
with open(path, mode="r", encoding="utf-8") as f: | |
for article in json.load(f)["data"]: | |
for para in article["paragraphs"]: | |
context = para["context"] | |
for qa in para["qas"]: | |
question = qa["question"] | |
question_id = qa["id"] | |
answer_texts, start_positions, end_positions = [], [], [] | |
for answer in qa["answers"]: | |
answer_texts.append(answer["text"]) | |
start_positions.append(answer["answer_start"]) | |
end_positions.append(answer["answer_start"] + len(answer["text"]) - 1) | |
examples.append((context, question, question_id, start_positions, end_positions, answer_texts)) | |
return examples | |
def convert_examples_to_dataset(args, examples): | |
# Converts a list of examples into a dataset that can be directly given as input to a model. | |
dataset = [] | |
print("The number of questions in the dataset:{}".format(len(examples))) | |
for i in range(len(examples)): | |
context = examples[i][0] | |
question = examples[i][1] | |
question_id = examples[i][2] | |
# Only consider the first answer. | |
start_position_absolute = examples[i][3][0] | |
end_position_absolute = examples[i][4][0] | |
answers = examples[i][5] | |
max_context_length = args.seq_length - len(question) - 3 | |
# Divide the context into multiple spans. | |
doc_spans = [] | |
start_offset = 0 | |
while start_offset < len(context): | |
length = len(context) - start_offset | |
if length > max_context_length: | |
length = max_context_length | |
doc_spans.append((start_offset, length)) | |
if start_offset + length == len(context): | |
break | |
start_offset += min(length, args.doc_stride) | |
for doc_span_index, doc_span in enumerate(doc_spans): | |
start_offset = doc_span[0] | |
span_context = context[start_offset : start_offset + doc_span[1]] | |
# Convert absolute position to relative position. | |
start_position = start_position_absolute - start_offset + len(question) + 2 | |
end_position = end_position_absolute - start_offset + len(question) + 2 | |
# If span does not contain the complete answer, we use it for data augmentation. | |
if start_position < len(question) + 2: | |
start_position = len(question) + 2 | |
if end_position > doc_span[1] + len(question) + 1: | |
end_position = doc_span[1] + len(question) + 1 | |
if start_position > doc_span[1] + len(question) + 1 or end_position < len(question) + 2: | |
start_position, end_position = 0, 0 | |
src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(question) + [SEP_TOKEN]) | |
src_b = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(span_context) + [SEP_TOKEN]) | |
src = src_a + src_b | |
seg = [1] * len(src_a) + [2] * len(src_b) | |
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0] | |
while len(src) < args.seq_length: | |
src.append(PAD_ID) | |
seg.append(0) | |
dataset.append((src, seg, start_position, end_position, answers, question_id, len(question), doc_span_index, start_offset)) | |
return dataset | |
def read_dataset(args, path): | |
examples = read_examples(path) | |
dataset = convert_examples_to_dataset(args, examples) | |
return dataset, examples | |
def batch_loader(batch_size, src, seg, start_position, end_position): | |
instances_num = src.size()[0] | |
for i in range(instances_num // batch_size): | |
src_batch = src[i * batch_size : (i + 1) * batch_size, :] | |
seg_batch = seg[i * batch_size : (i + 1) * batch_size, :] | |
start_position_batch = start_position[i * batch_size : (i + 1) * batch_size] | |
end_position_batch = end_position[i * batch_size : (i + 1) * batch_size] | |
yield src_batch, seg_batch, start_position_batch, end_position_batch | |
if instances_num > instances_num // batch_size * batch_size: | |
src_batch = src[instances_num // batch_size * batch_size :, :] | |
seg_batch = seg[instances_num // batch_size * batch_size :, :] | |
start_position_batch = start_position[instances_num // batch_size * batch_size :] | |
end_position_batch = end_position[instances_num // batch_size * batch_size :] | |
yield src_batch, seg_batch, start_position_batch, end_position_batch | |
def train(args, model, optimizer, scheduler, src_batch, seg_batch, start_position_batch, end_position_batch): | |
model.zero_grad() | |
src_batch = src_batch.to(args.device) | |
seg_batch = seg_batch.to(args.device) | |
start_position_batch = start_position_batch.to(args.device) | |
end_position_batch = end_position_batch.to(args.device) | |
loss, _, _ = model(src_batch, seg_batch, start_position_batch, end_position_batch) | |
if torch.cuda.device_count() > 1: | |
loss = torch.mean(loss) | |
if args.fp16: | |
with amp.scale_loss(loss, optimizer) as scaled_loss: | |
scaled_loss.backward() | |
else: | |
loss.backward() | |
optimizer.step() | |
scheduler.step() | |
return loss | |
# Evaluation script from CMRC2018. | |
# We modify the tokenizer. | |
def mixed_segmentation(in_str, rm_punc=False): | |
#in_str = str(in_str).decode('utf-8').lower().strip() | |
n_str = str(in_str).lower().strip() | |
segs_out = [] | |
temp_str = "" | |
sp_char = ['-',':','_','*','^','/','\\','~','`','+','=', | |
',','。',':','?','!','“','”',';','’','《','》','……','·','、', | |
'「','」','(',')','-','~','『','』'] | |
for char in in_str: | |
if rm_punc and char in sp_char: | |
continue | |
#if re.search(ur'[\u4e00-\u9fa5]', char) or char in sp_char: | |
if re.search(r'[\u4e00-\u9fa5]', char) or char in sp_char: | |
if temp_str != "": | |
#ss = nltk.word_tokenize(temp_str) | |
ss = list(temp_str) | |
segs_out.extend(ss) | |
temp_str = "" | |
segs_out.append(char) | |
else: | |
temp_str += char | |
if temp_str != "": | |
#ss = nltk.word_tokenize(temp_str) | |
ss = list(temp_str) | |
segs_out.extend(ss) | |
return segs_out | |
def find_lcs(s1, s2): | |
m = [[0 for i in range(len(s2)+1)] for j in range(len(s1)+1)] | |
mmax = 0 | |
p = 0 | |
for i in range(len(s1)): | |
for j in range(len(s2)): | |
if s1[i] == s2[j]: | |
m[i+1][j+1] = m[i][j]+1 | |
if m[i+1][j+1] > mmax: | |
mmax=m[i+1][j+1] | |
p=i+1 | |
return s1[p-mmax:p], mmax | |
def remove_punctuation(in_str): | |
#in_str = str(in_str).decode('utf-8').lower().strip() | |
in_str = str(in_str).lower().strip() | |
sp_char = ['-',':','_','*','^','/','\\','~','`','+','=', | |
',','。',':','?','!','“','”',';','’','《','》','……','·','、', | |
'「','」','(',')','-','~','『','』'] | |
out_segs = [] | |
for char in in_str: | |
if char in sp_char: | |
continue | |
else: | |
out_segs.append(char) | |
return ''.join(out_segs) | |
def calc_f1_score(answers, prediction): | |
f1_scores = [] | |
for ans in answers: | |
ans_segs = mixed_segmentation(ans, rm_punc=True) | |
prediction_segs = mixed_segmentation(prediction, rm_punc=True) | |
lcs, lcs_len = find_lcs(ans_segs, prediction_segs) | |
if lcs_len == 0: | |
f1_scores.append(0) | |
continue | |
precision = 1.0*lcs_len/len(prediction_segs) | |
recall = 1.0*lcs_len/len(ans_segs) | |
f1 = (2*precision*recall)/(precision+recall) | |
f1_scores.append(f1) | |
return max(f1_scores) | |
def calc_em_score(answers, prediction): | |
em = 0 | |
for ans in answers: | |
ans_ = remove_punctuation(ans) | |
prediction_ = remove_punctuation(prediction) | |
if ans_ == prediction_: | |
em = 1 | |
break | |
return em | |
def get_answers(dataset, start_prob_all, end_prob_all): | |
previous_question_id = -1 | |
pred_answers = [] | |
# For each predicted answer, we store its span index, start position, end position, and score. | |
current_answer = (-1, -1, -1, -100.0) | |
for i in range(len(dataset)): | |
question_id = dataset[i][5] | |
question_length = dataset[i][6] | |
span_index = dataset[i][7] | |
start_offset = dataset[i][8] | |
start_scores, end_scores = start_prob_all[i], end_prob_all[i] | |
start_pred = torch.argmax(start_scores[question_length + 2 :], dim=0) + question_length + 2 | |
end_pred = start_pred + torch.argmax(end_scores[start_pred:], dim=0) | |
score = start_scores[start_pred] + end_scores[end_pred] | |
start_pred_absolute = start_pred + start_offset - question_length - 2 | |
end_pred_absolute = end_pred + start_offset - question_length - 2 | |
if question_id == previous_question_id: | |
if score > current_answer[3]: | |
current_answer = (span_index, start_pred_absolute, end_pred_absolute, score) | |
else: | |
if i > 0: | |
pred_answers.append(current_answer) | |
previous_question_id = question_id | |
current_answer = (span_index, start_pred_absolute, end_pred_absolute, score) | |
pred_answers.append(current_answer) | |
return pred_answers | |
# Evaluation function. | |
def evaluate(args, dataset, examples): | |
src = torch.LongTensor([sample[0] for sample in dataset]) | |
seg = torch.LongTensor([sample[1] for sample in dataset]) | |
start_position = torch.LongTensor([sample[2] for sample in dataset]) | |
end_position = torch.LongTensor([sample[3] for sample in dataset]) | |
batch_size = args.batch_size | |
instances_num = src.size()[0] | |
args.model.eval() | |
start_prob_all, end_prob_all = [], [] | |
for i, (src_batch, seg_batch, start_position_batch, end_position_batch) in enumerate(batch_loader(batch_size, src, seg, start_position, end_position)): | |
src_batch = src_batch.to(args.device) | |
seg_batch = seg_batch.to(args.device) | |
start_position_batch = start_position_batch.to(args.device) | |
end_position_batch = end_position_batch.to(args.device) | |
with torch.no_grad(): | |
loss, start_logits, end_logits = args.model(src_batch, seg_batch, start_position_batch, end_position_batch) | |
start_prob = nn.Softmax(dim=1)(start_logits) | |
end_prob = nn.Softmax(dim=1)(end_logits) | |
for j in range(start_prob.size()[0]): | |
start_prob_all.append(start_prob[j]) | |
end_prob_all.append(end_prob[j]) | |
pred_answers = get_answers(dataset, start_prob_all, end_prob_all) | |
f1, em = 0, 0 | |
total_count, skip_count = len(examples), 0 | |
for i in range(len(examples)): | |
answers = examples[i][5] | |
start_pred_pos = pred_answers[i][1] | |
end_pred_pos = pred_answers[i][2] | |
if end_pred_pos <= start_pred_pos: | |
skip_count += 1 | |
continue | |
prediction = examples[i][0][start_pred_pos: end_pred_pos + 1] | |
f1 += calc_f1_score(answers, prediction) | |
em += calc_em_score(answers, prediction) | |
f1_score = 100.0 * f1 / total_count | |
em_score = 100.0 * em / total_count | |
avg = (f1_score + em_score) * 0.5 | |
args.logger.info("Avg: {:.4f},F1:{:.4f},EM:{:.4f},Total:{},Skip:{}".format(avg, f1_score, em_score, total_count, skip_count)) | |
return avg | |
def main(): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
finetune_opts(parser) | |
parser.add_argument("--vocab_path", default=None, type=str, | |
help="Path of the vocabulary file.") | |
parser.add_argument("--spm_model_path", default=None, type=str, | |
help="Path of the sentence piece model.") | |
parser.add_argument("--doc_stride", default=128, type=int, | |
help="When splitting up a long document into chunks, how much stride to take between chunks.") | |
args = parser.parse_args() | |
# Load the hyperparameters from the config file. | |
args = load_hyperparam(args) | |
set_seed(args.seed) | |
# Build tokenizer. | |
args.tokenizer = CharTokenizer(args) | |
# Build machine reading comprehension model. | |
model = MachineReadingComprehension(args) | |
# Load or initialize parameters. | |
load_or_initialize_parameters(args, model) | |
# Get logger. | |
args.logger = init_logger(args) | |
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(args.device) | |
# Build tokenizer. | |
args.tokenizer = CharTokenizer(args) | |
# Training phase. | |
batch_size = args.batch_size | |
args.logger.info("Batch size: {}".format(batch_size)) | |
trainset, _ = read_dataset(args, args.train_path) | |
instances_num = len(trainset) | |
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1 | |
args.logger.info("The number of training instances: {}".format(instances_num)) | |
optimizer, scheduler = build_optimizer(args, model) | |
if args.fp16: | |
try: | |
from apex import amp | |
except ImportError: | |
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") | |
model, optimizer = amp.initialize(model, optimizer,opt_level=args.fp16_opt_level) | |
if torch.cuda.device_count() > 1: | |
args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) | |
model = torch.nn.DataParallel(model) | |
args.model = model | |
total_loss = 0.0 | |
result = 0.0 | |
best_result = 0.0 | |
args.logger.info("Start training.") | |
for epoch in range(1, args.epochs_num + 1): | |
random.shuffle(trainset) | |
src = torch.LongTensor([sample[0] for sample in trainset]) | |
seg = torch.LongTensor([sample[1] for sample in trainset]) | |
start_position = torch.LongTensor([sample[2] for sample in trainset]) | |
end_position = torch.LongTensor([sample[3] for sample in trainset]) | |
model.train() | |
for i, (src_batch, seg_batch, start_position_batch, end_position_batch) in enumerate(batch_loader(batch_size, src, seg, start_position, end_position)): | |
loss = train(args, model, optimizer, scheduler, src_batch, seg_batch, start_position_batch, end_position_batch) | |
total_loss += loss.item() | |
if (i + 1) % args.report_steps == 0: | |
args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i+1, total_loss / args.report_steps)) | |
total_loss = 0.0 | |
result = evaluate(args, *read_dataset(args, args.dev_path)) | |
if result > best_result: | |
best_result = result | |
save_model(model, args.output_model_path) | |
# Evaluation phase. | |
if args.test_path is not None: | |
args.logger.info("Test set evaluation.") | |
if torch.cuda.device_count() > 1: | |
args.model.module.load_state_dict(torch.load(args.output_model_path)) | |
else: | |
args.model.load_state_dict(torch.load(args.output_model_path)) | |
evaluate(args, *read_dataset(args, args.test_path)) | |
if __name__ == "__main__": | |
main() | |