VISOR-GPT / train /finetune /run_cmrc.py
szukevin's picture
upload
7900c16
raw
history blame
17.4 kB
"""
This script provides an example to wrap TencentPretrain for Chinese machine reading comprehension.
"""
import sys
import os
import re
import argparse
import json
import random
import torch
import torch.nn as nn
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)
from tencentpretrain.embeddings import *
from tencentpretrain.encoders import *
from tencentpretrain.utils.constants import *
from tencentpretrain.utils.tokenizers import *
from tencentpretrain.utils.optimizers import *
from tencentpretrain.utils.config import load_hyperparam
from tencentpretrain.utils.seed import set_seed
from tencentpretrain.utils.logging import init_logger
from tencentpretrain.model_saver import save_model
from tencentpretrain.opts import finetune_opts
from finetune.run_classifier import build_optimizer, load_or_initialize_parameters
class MachineReadingComprehension(nn.Module):
def __init__(self, args):
super(MachineReadingComprehension, self).__init__()
self.embedding = Embedding(args)
for embedding_name in args.embedding:
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab))
self.embedding.update(tmp_emb, embedding_name)
self.encoder = str2encoder[args.encoder](args)
self.output_layer = nn.Linear(args.hidden_size, 2)
def forward(self, src, seg, start_position, end_position):
# Embedding.
emb = self.embedding(src, seg)
# Encoder.
output = self.encoder(emb, seg)
# Target.
logits = self.output_layer(output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits, end_logits = start_logits.squeeze(-1), end_logits.squeeze(-1)
start_loss = nn.NLLLoss()(nn.LogSoftmax(dim=-1)(start_logits), start_position)
end_loss = nn.NLLLoss()(nn.LogSoftmax(dim=-1)(end_logits), end_position)
loss = (start_loss + end_loss) / 2
return loss, start_logits, end_logits
def read_examples(path):
# Read squad-style examples.
examples = []
with open(path, mode="r", encoding="utf-8") as f:
for article in json.load(f)["data"]:
for para in article["paragraphs"]:
context = para["context"]
for qa in para["qas"]:
question = qa["question"]
question_id = qa["id"]
answer_texts, start_positions, end_positions = [], [], []
for answer in qa["answers"]:
answer_texts.append(answer["text"])
start_positions.append(answer["answer_start"])
end_positions.append(answer["answer_start"] + len(answer["text"]) - 1)
examples.append((context, question, question_id, start_positions, end_positions, answer_texts))
return examples
def convert_examples_to_dataset(args, examples):
# Converts a list of examples into a dataset that can be directly given as input to a model.
dataset = []
print("The number of questions in the dataset:{}".format(len(examples)))
for i in range(len(examples)):
context = examples[i][0]
question = examples[i][1]
question_id = examples[i][2]
# Only consider the first answer.
start_position_absolute = examples[i][3][0]
end_position_absolute = examples[i][4][0]
answers = examples[i][5]
max_context_length = args.seq_length - len(question) - 3
# Divide the context into multiple spans.
doc_spans = []
start_offset = 0
while start_offset < len(context):
length = len(context) - start_offset
if length > max_context_length:
length = max_context_length
doc_spans.append((start_offset, length))
if start_offset + length == len(context):
break
start_offset += min(length, args.doc_stride)
for doc_span_index, doc_span in enumerate(doc_spans):
start_offset = doc_span[0]
span_context = context[start_offset : start_offset + doc_span[1]]
# Convert absolute position to relative position.
start_position = start_position_absolute - start_offset + len(question) + 2
end_position = end_position_absolute - start_offset + len(question) + 2
# If span does not contain the complete answer, we use it for data augmentation.
if start_position < len(question) + 2:
start_position = len(question) + 2
if end_position > doc_span[1] + len(question) + 1:
end_position = doc_span[1] + len(question) + 1
if start_position > doc_span[1] + len(question) + 1 or end_position < len(question) + 2:
start_position, end_position = 0, 0
src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(question) + [SEP_TOKEN])
src_b = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(span_context) + [SEP_TOKEN])
src = src_a + src_b
seg = [1] * len(src_a) + [2] * len(src_b)
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0]
while len(src) < args.seq_length:
src.append(PAD_ID)
seg.append(0)
dataset.append((src, seg, start_position, end_position, answers, question_id, len(question), doc_span_index, start_offset))
return dataset
def read_dataset(args, path):
examples = read_examples(path)
dataset = convert_examples_to_dataset(args, examples)
return dataset, examples
def batch_loader(batch_size, src, seg, start_position, end_position):
instances_num = src.size()[0]
for i in range(instances_num // batch_size):
src_batch = src[i * batch_size : (i + 1) * batch_size, :]
seg_batch = seg[i * batch_size : (i + 1) * batch_size, :]
start_position_batch = start_position[i * batch_size : (i + 1) * batch_size]
end_position_batch = end_position[i * batch_size : (i + 1) * batch_size]
yield src_batch, seg_batch, start_position_batch, end_position_batch
if instances_num > instances_num // batch_size * batch_size:
src_batch = src[instances_num // batch_size * batch_size :, :]
seg_batch = seg[instances_num // batch_size * batch_size :, :]
start_position_batch = start_position[instances_num // batch_size * batch_size :]
end_position_batch = end_position[instances_num // batch_size * batch_size :]
yield src_batch, seg_batch, start_position_batch, end_position_batch
def train(args, model, optimizer, scheduler, src_batch, seg_batch, start_position_batch, end_position_batch):
model.zero_grad()
src_batch = src_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
start_position_batch = start_position_batch.to(args.device)
end_position_batch = end_position_batch.to(args.device)
loss, _, _ = model(src_batch, seg_batch, start_position_batch, end_position_batch)
if torch.cuda.device_count() > 1:
loss = torch.mean(loss)
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
scheduler.step()
return loss
# Evaluation script from CMRC2018.
# We modify the tokenizer.
def mixed_segmentation(in_str, rm_punc=False):
#in_str = str(in_str).decode('utf-8').lower().strip()
n_str = str(in_str).lower().strip()
segs_out = []
temp_str = ""
sp_char = ['-',':','_','*','^','/','\\','~','`','+','=',
',','。',':','?','!','“','”',';','’','《','》','……','·','、',
'「','」','(',')','-','~','『','』']
for char in in_str:
if rm_punc and char in sp_char:
continue
#if re.search(ur'[\u4e00-\u9fa5]', char) or char in sp_char:
if re.search(r'[\u4e00-\u9fa5]', char) or char in sp_char:
if temp_str != "":
#ss = nltk.word_tokenize(temp_str)
ss = list(temp_str)
segs_out.extend(ss)
temp_str = ""
segs_out.append(char)
else:
temp_str += char
if temp_str != "":
#ss = nltk.word_tokenize(temp_str)
ss = list(temp_str)
segs_out.extend(ss)
return segs_out
def find_lcs(s1, s2):
m = [[0 for i in range(len(s2)+1)] for j in range(len(s1)+1)]
mmax = 0
p = 0
for i in range(len(s1)):
for j in range(len(s2)):
if s1[i] == s2[j]:
m[i+1][j+1] = m[i][j]+1
if m[i+1][j+1] > mmax:
mmax=m[i+1][j+1]
p=i+1
return s1[p-mmax:p], mmax
def remove_punctuation(in_str):
#in_str = str(in_str).decode('utf-8').lower().strip()
in_str = str(in_str).lower().strip()
sp_char = ['-',':','_','*','^','/','\\','~','`','+','=',
',','。',':','?','!','“','”',';','’','《','》','……','·','、',
'「','」','(',')','-','~','『','』']
out_segs = []
for char in in_str:
if char in sp_char:
continue
else:
out_segs.append(char)
return ''.join(out_segs)
def calc_f1_score(answers, prediction):
f1_scores = []
for ans in answers:
ans_segs = mixed_segmentation(ans, rm_punc=True)
prediction_segs = mixed_segmentation(prediction, rm_punc=True)
lcs, lcs_len = find_lcs(ans_segs, prediction_segs)
if lcs_len == 0:
f1_scores.append(0)
continue
precision = 1.0*lcs_len/len(prediction_segs)
recall = 1.0*lcs_len/len(ans_segs)
f1 = (2*precision*recall)/(precision+recall)
f1_scores.append(f1)
return max(f1_scores)
def calc_em_score(answers, prediction):
em = 0
for ans in answers:
ans_ = remove_punctuation(ans)
prediction_ = remove_punctuation(prediction)
if ans_ == prediction_:
em = 1
break
return em
def get_answers(dataset, start_prob_all, end_prob_all):
previous_question_id = -1
pred_answers = []
# For each predicted answer, we store its span index, start position, end position, and score.
current_answer = (-1, -1, -1, -100.0)
for i in range(len(dataset)):
question_id = dataset[i][5]
question_length = dataset[i][6]
span_index = dataset[i][7]
start_offset = dataset[i][8]
start_scores, end_scores = start_prob_all[i], end_prob_all[i]
start_pred = torch.argmax(start_scores[question_length + 2 :], dim=0) + question_length + 2
end_pred = start_pred + torch.argmax(end_scores[start_pred:], dim=0)
score = start_scores[start_pred] + end_scores[end_pred]
start_pred_absolute = start_pred + start_offset - question_length - 2
end_pred_absolute = end_pred + start_offset - question_length - 2
if question_id == previous_question_id:
if score > current_answer[3]:
current_answer = (span_index, start_pred_absolute, end_pred_absolute, score)
else:
if i > 0:
pred_answers.append(current_answer)
previous_question_id = question_id
current_answer = (span_index, start_pred_absolute, end_pred_absolute, score)
pred_answers.append(current_answer)
return pred_answers
# Evaluation function.
def evaluate(args, dataset, examples):
src = torch.LongTensor([sample[0] for sample in dataset])
seg = torch.LongTensor([sample[1] for sample in dataset])
start_position = torch.LongTensor([sample[2] for sample in dataset])
end_position = torch.LongTensor([sample[3] for sample in dataset])
batch_size = args.batch_size
instances_num = src.size()[0]
args.model.eval()
start_prob_all, end_prob_all = [], []
for i, (src_batch, seg_batch, start_position_batch, end_position_batch) in enumerate(batch_loader(batch_size, src, seg, start_position, end_position)):
src_batch = src_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
start_position_batch = start_position_batch.to(args.device)
end_position_batch = end_position_batch.to(args.device)
with torch.no_grad():
loss, start_logits, end_logits = args.model(src_batch, seg_batch, start_position_batch, end_position_batch)
start_prob = nn.Softmax(dim=1)(start_logits)
end_prob = nn.Softmax(dim=1)(end_logits)
for j in range(start_prob.size()[0]):
start_prob_all.append(start_prob[j])
end_prob_all.append(end_prob[j])
pred_answers = get_answers(dataset, start_prob_all, end_prob_all)
f1, em = 0, 0
total_count, skip_count = len(examples), 0
for i in range(len(examples)):
answers = examples[i][5]
start_pred_pos = pred_answers[i][1]
end_pred_pos = pred_answers[i][2]
if end_pred_pos <= start_pred_pos:
skip_count += 1
continue
prediction = examples[i][0][start_pred_pos: end_pred_pos + 1]
f1 += calc_f1_score(answers, prediction)
em += calc_em_score(answers, prediction)
f1_score = 100.0 * f1 / total_count
em_score = 100.0 * em / total_count
avg = (f1_score + em_score) * 0.5
args.logger.info("Avg: {:.4f},F1:{:.4f},EM:{:.4f},Total:{},Skip:{}".format(avg, f1_score, em_score, total_count, skip_count))
return avg
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
finetune_opts(parser)
parser.add_argument("--vocab_path", default=None, type=str,
help="Path of the vocabulary file.")
parser.add_argument("--spm_model_path", default=None, type=str,
help="Path of the sentence piece model.")
parser.add_argument("--doc_stride", default=128, type=int,
help="When splitting up a long document into chunks, how much stride to take between chunks.")
args = parser.parse_args()
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
set_seed(args.seed)
# Build tokenizer.
args.tokenizer = CharTokenizer(args)
# Build machine reading comprehension model.
model = MachineReadingComprehension(args)
# Load or initialize parameters.
load_or_initialize_parameters(args, model)
# Get logger.
args.logger = init_logger(args)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(args.device)
# Build tokenizer.
args.tokenizer = CharTokenizer(args)
# Training phase.
batch_size = args.batch_size
args.logger.info("Batch size: {}".format(batch_size))
trainset, _ = read_dataset(args, args.train_path)
instances_num = len(trainset)
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1
args.logger.info("The number of training instances: {}".format(instances_num))
optimizer, scheduler = build_optimizer(args, model)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer,opt_level=args.fp16_opt_level)
if torch.cuda.device_count() > 1:
args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
args.model = model
total_loss = 0.0
result = 0.0
best_result = 0.0
args.logger.info("Start training.")
for epoch in range(1, args.epochs_num + 1):
random.shuffle(trainset)
src = torch.LongTensor([sample[0] for sample in trainset])
seg = torch.LongTensor([sample[1] for sample in trainset])
start_position = torch.LongTensor([sample[2] for sample in trainset])
end_position = torch.LongTensor([sample[3] for sample in trainset])
model.train()
for i, (src_batch, seg_batch, start_position_batch, end_position_batch) in enumerate(batch_loader(batch_size, src, seg, start_position, end_position)):
loss = train(args, model, optimizer, scheduler, src_batch, seg_batch, start_position_batch, end_position_batch)
total_loss += loss.item()
if (i + 1) % args.report_steps == 0:
args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i+1, total_loss / args.report_steps))
total_loss = 0.0
result = evaluate(args, *read_dataset(args, args.dev_path))
if result > best_result:
best_result = result
save_model(model, args.output_model_path)
# Evaluation phase.
if args.test_path is not None:
args.logger.info("Test set evaluation.")
if torch.cuda.device_count() > 1:
args.model.module.load_state_dict(torch.load(args.output_model_path))
else:
args.model.load_state_dict(torch.load(args.output_model_path))
evaluate(args, *read_dataset(args, args.test_path))
if __name__ == "__main__":
main()