Spaces:
Runtime error
Runtime error
""" | |
This script provides an exmaple to wrap TencentPretrain for document-based question answering. | |
""" | |
import sys | |
import os | |
import random | |
import argparse | |
import torch | |
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
sys.path.append(tencentpretrain_dir) | |
from tencentpretrain.utils.constants import * | |
from tencentpretrain.utils import * | |
from tencentpretrain.utils.optimizers import * | |
from tencentpretrain.utils.config import load_hyperparam | |
from tencentpretrain.utils.seed import set_seed | |
from tencentpretrain.utils.logging import init_logger | |
from tencentpretrain.model_saver import save_model | |
from tencentpretrain.opts import finetune_opts, tokenizer_opts, adv_opts | |
from finetune.run_classifier import Classifier, count_labels_num, build_optimizer, batch_loader, train_model, load_or_initialize_parameters | |
def read_dataset(args, path): | |
dataset, columns = [], {} | |
with open(path, mode="r", encoding="utf-8") as f: | |
for line_id, line in enumerate(f): | |
if line_id == 0: | |
for i, column_name in enumerate(line.rstrip("\r\n").split("\t")): | |
columns[column_name] = i | |
continue | |
line = line.rstrip("\r\n").split("\t") | |
qid = int(line[columns["qid"]]) | |
tgt = int(line[columns["label"]]) | |
text_a, text_b = line[columns["text_a"]], line[columns["text_b"]] | |
src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN]) | |
src_b = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_b) + [SEP_TOKEN]) | |
src = src_a + src_b | |
seg = [1] * len(src_a) + [2] * len(src_b) | |
if len(src) > args.seq_length: | |
src = src[: args.seq_length] | |
seg = seg[: args.seq_length] | |
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0] | |
while len(src) < args.seq_length: | |
src.append(PAD_ID) | |
seg.append(0) | |
dataset.append((src, tgt, seg, qid)) | |
return dataset | |
def gen_dataset_groupby_qid(dataset, logits_all): | |
dataset_groupby_qid, correct_answer_orders, scores = [], [], [] | |
for i in range(len(dataset)): | |
label = dataset[i][1] | |
if i == 0: | |
qid = dataset[i][3] | |
# Order of the current sentence in the document. | |
current_order = 0 | |
scores.append(float(logits_all[i][1].item())) | |
if label == 1: | |
# Occasionally, more than one sentences in a document contain answers. | |
correct_answer_orders.append(current_order) | |
current_order += 1 | |
continue | |
if qid == dataset[i][3]: | |
scores.append(float(logits_all[i][1].item())) | |
if label == 1: | |
correct_answer_orders.append(current_order) | |
current_order += 1 | |
else: | |
# For each question, we record which sentences contain answers | |
# and the scores of all sentences in the document. | |
dataset_groupby_qid.append((qid, correct_answer_orders, scores)) | |
correct_answer_orders, scores, current_order = [], [], 0 | |
qid = dataset[i][3] | |
scores.append(float(logits_all[i][1].item())) | |
if label == 1: | |
correct_answer_orders.append(current_order) | |
current_order += 1 | |
dataset_groupby_qid.append((qid, correct_answer_orders, scores)) | |
return dataset_groupby_qid | |
def evaluate(args, dataset): | |
src = torch.LongTensor([sample[0] for sample in dataset]) | |
tgt = torch.LongTensor([sample[1] for sample in dataset]) | |
seg = torch.LongTensor([sample[2] for sample in dataset]) | |
batch_size = args.batch_size | |
instances_num = src.size()[0] | |
args.model.eval() | |
for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)): | |
src_batch = src_batch.to(args.device) | |
tgt_batch = tgt_batch.to(args.device) | |
seg_batch = seg_batch.to(args.device) | |
with torch.no_grad(): | |
loss, logits = args.model(src_batch, tgt_batch, seg_batch) | |
if i == 0: | |
logits_all = logits | |
if i >= 1: | |
logits_all = torch.cat((logits_all, logits), 0) | |
# To calculate MRR, the results are grouped by qid. | |
dataset_groupby_qid = gen_dataset_groupby_qid(dataset, logits_all) | |
reciprocal_rank = [] | |
for _, correct_answer_orders, scores in dataset_groupby_qid: | |
if len(correct_answer_orders) == 1: | |
sorted_scores = sorted(scores, reverse=True) | |
for j in range(len(sorted_scores)): | |
if sorted_scores[j] == scores[correct_answer_orders[0]]: | |
reciprocal_rank.append(1 / (j + 1)) | |
else: | |
current_rank = len(scores) | |
sorted_scores = sorted(scores, reverse=True) | |
for i in range(len(correct_answer_orders)): | |
for j in range(len(scores)): | |
if sorted_scores[j] == scores[correct_answer_orders[i]] and j < current_rank: | |
current_rank = j | |
reciprocal_rank.append(1 / (current_rank + 1)) | |
MRR = sum(reciprocal_rank) / len(reciprocal_rank) | |
args.logger.info("Mean Reciprocal Rank: {:.4f}".format(MRR)) | |
return MRR | |
def main(): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
finetune_opts(parser) | |
tokenizer_opts(parser) | |
parser.add_argument("--soft_targets", action='store_true', | |
help="Train model with logits.") | |
parser.add_argument("--soft_alpha", type=float, default=0.5, | |
help="Weight of the soft targets loss.") | |
adv_opts(parser) | |
args = parser.parse_args() | |
# Load the hyperparameters from the config file. | |
args = load_hyperparam(args) | |
set_seed(args.seed) | |
# Count the number of labels. | |
args.labels_num = count_labels_num(args.train_path) | |
# Build tokenizer. | |
args.tokenizer = str2tokenizer[args.tokenizer](args) | |
# Build classification model. | |
model = Classifier(args) | |
# Load or initialize parameters. | |
load_or_initialize_parameters(args, model) | |
# Get logger. | |
args.logger = init_logger(args) | |
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(args.device) | |
# Training phase. | |
trainset = read_dataset(args, args.train_path) | |
instances_num = len(trainset) | |
batch_size = args.batch_size | |
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1 | |
args.logger.info("Batch size: {}".format(batch_size)) | |
args.logger.info("The number of training instances: {}".format(instances_num)) | |
optimizer, scheduler = build_optimizer(args, model) | |
if args.fp16: | |
try: | |
from apex import amp | |
except ImportError: | |
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") | |
model, optimizer = amp.initialize(model, optimizer,opt_level = args.fp16_opt_level) | |
args.amp = amp | |
if torch.cuda.device_count() > 1: | |
args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) | |
model = torch.nn.DataParallel(model) | |
args.model = model | |
if args.use_adv: | |
args.adv_method = str2adv[args.adv_type](model) | |
total_loss, result, best_result = 0.0, 0.0, 0.0 | |
args.logger.info("Start training.") | |
for epoch in range(1, args.epochs_num + 1): | |
random.shuffle(trainset) | |
src = torch.LongTensor([example[0] for example in trainset]) | |
tgt = torch.LongTensor([example[1] for example in trainset]) | |
seg = torch.LongTensor([example[2] for example in trainset]) | |
model.train() | |
for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)): | |
loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch) | |
total_loss += loss.item() | |
if (i + 1) % args.report_steps == 0: | |
args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps)) | |
total_loss = 0.0 | |
result = evaluate(args, read_dataset(args, args.dev_path)) | |
if result > best_result: | |
best_result = result | |
save_model(model, args.output_model_path) | |
# Evaluation phase. | |
if args.test_path is not None: | |
args.logger.info("Test set evaluation.") | |
if torch.cuda.device_count() > 1: | |
args.model.module.load_state_dict(torch.load(args.output_model_path)) | |
else: | |
args.model.load_state_dict(torch.load(args.output_model_path)) | |
evaluate(args, read_dataset(args, args.test_path)) | |
if __name__ == "__main__": | |
main() | |