VISOR-GPT / train /finetune /run_speech2text.py
szukevin's picture
upload
7900c16
raw
history blame
12.7 kB
"""
This script provides an example to wrap TencentPretrain for speech-to-text fine-tuning.
"""
import sys
import os
import random
import argparse
import editdistance
import torch
import torchaudio
import torchaudio.compliance.kaldi as ta_kaldi
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)
from tencentpretrain.model_saver import save_model
from tencentpretrain.decoders import *
from tencentpretrain.targets import *
from tencentpretrain.utils import utterance_cmvn
from finetune.run_classifier import *
class Speech2text(torch.nn.Module):
def __init__(self, args):
super(Speech2text, self).__init__()
self.embedding = Embedding(args)
for embedding_name in args.embedding:
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab))
self.embedding.update(tmp_emb, embedding_name)
self.encoder = str2encoder[args.encoder](args)
self.tgt_embedding = Embedding(args)
for embedding_name in args.tgt_embedding:
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab))
self.tgt_embedding.update(tmp_emb, embedding_name)
self.decoder = str2decoder[args.decoder](args)
self.target = Target()
for target_name in args.target:
tmp_target = str2target[target_name](args, len(args.tokenizer.vocab))
self.target.update(tmp_target, target_name)
if args.tie_weights:
self.target.lm.output_layer.weight = self.tgt_embedding.word.embedding.weight
def encode(self, src, seg):
emb = self.embedding(src, seg)
memory_bank = self.encoder(emb, seg)
return memory_bank, emb
def decode(self, emb, memory_bank, tgt, tgt_seg):
tgt_in, tgt_out, _ = tgt
decoder_emb = self.tgt_embedding(tgt_in, tgt_seg)
hidden = self.decoder(memory_bank, decoder_emb, [emb.abs()[:,:,0]])
output = self.target.lm.output_layer(hidden)
return output
def forward(self, src, tgt, seg, tgt_seg, memory_bank=None, only_use_encoder=False):
if only_use_encoder:
return self.encode(src, seg)
if memory_bank is not None:
emb = src
return self.decode(emb, memory_bank, tgt, tgt_seg)
tgt_in, tgt_out, _ = tgt
memory_bank, emb = self.encode(src, seg)
if tgt_out is None:
output = self.decode(emb, memory_bank, tgt, None)
return None, output
else:
decoder_emb = self.tgt_embedding(tgt_in, tgt_seg)
hidden = self.decoder(memory_bank, decoder_emb, (seg,))
loss = self.target(hidden, tgt_out, None)[0]
return loss, None
def read_dataset(args, path):
dataset, columns = [], {}
padding_vector = torch.FloatTensor(args.audio_feature_size * [0.0] if args.audio_feature_size > 1 else 0.0).unsqueeze(0)
with open(path, mode="r", encoding="utf-8") as f:
for line_id, line in enumerate(f):
if line_id == 0:
for i, column_name in enumerate(line.rstrip("\r\n").split("\t")):
columns[column_name] = i
continue
line = line.rstrip("\r\n").split("\t")
text, wav_path = line[columns["text"]], line[columns["wav_path"]]
tgt = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN]) + \
args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text)) + \
args.tokenizer.convert_tokens_to_ids([SEP_TOKEN])
if len(tgt) > args.seq_length:
tgt = tgt[: args.seq_length]
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])
pad_num = args.seq_length - len(tgt)
tgt = tgt + PAD_ID * pad_num
waveform, sample_rate = torchaudio.load(wav_path)
waveform = waveform * (2 ** 15) # Kaldi compliance: 16-bit signed integers
feature = ta_kaldi.fbank(waveform, num_mel_bins=args.audio_feature_size, sample_frequency=sample_rate)
if "ceptral_normalize" in args.audio_preprocess:
feature = utterance_cmvn(feature)
difference = args.max_audio_frames - feature.size(0)
if difference < 0:
continue
else:
src_audio = torch.cat([feature] + [padding_vector] * difference)
seg_audio = [1] * int(feature.size(0) / args.conv_layers_num / 2) + [0] * (int(args.max_audio_frames /args.conv_layers_num / 2) - int(feature.size(0) / args.conv_layers_num / 2))
tgt_in = tgt[:-1]
tgt_out = tgt[1:]
tgt_seg = [1] * (len(tgt[1:]) - pad_num) + [0] * pad_num
dataset.append((src_audio, tgt_in, tgt_out, seg_audio, tgt_seg))
return dataset
def batch_loader(batch_size, src, tgt_in, tgt_out, seg, tgt_seg):
instances_num = src.size()[0]
for i in range(instances_num // batch_size):
src_batch = src[i * batch_size : (i + 1) * batch_size, :]
tgt_in_batch = tgt_in[i * batch_size : (i + 1) * batch_size, :]
tgt_out_batch = tgt_out[i * batch_size : (i + 1) * batch_size, :]
seg_batch = seg[i * batch_size : (i + 1) * batch_size, :]
tgt_seg_batch = tgt_seg[i * batch_size : (i + 1) * batch_size, :]
yield src_batch, tgt_in_batch, tgt_out_batch, seg_batch, tgt_seg_batch
if instances_num > instances_num // batch_size * batch_size:
src_batch = src[instances_num // batch_size * batch_size :, :]
tgt_in_batch = tgt_in[instances_num // batch_size * batch_size :, :]
tgt_out_batch = tgt_out[instances_num // batch_size * batch_size :, :]
seg_batch = seg[instances_num // batch_size * batch_size :, :]
tgt_seg_batch = tgt_seg[instances_num // batch_size * batch_size :, :]
yield src_batch, tgt_in_batch, tgt_out_batch, seg_batch, tgt_seg_batch
def train_model(args, model, optimizer, scheduler, src_batch, tgt_in_batch, tgt_out_batch, seg_batch, tgt_seg_batch):
model.zero_grad()
src_batch = src_batch.to(args.device)
tgt_in_batch = tgt_in_batch.to(args.device)
tgt_out_batch = tgt_out_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
tgt_seg_batch = tgt_seg_batch.to(args.device)
loss, _ = model(src_batch, (tgt_in_batch, tgt_out_batch, src_batch), seg_batch, tgt_seg_batch)
if torch.cuda.device_count() > 1:
loss = torch.mean(loss)
if args.fp16:
with args.amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
scheduler.step()
return loss
def evaluate(args, dataset):
src = torch.stack([example[0] for example in dataset], dim=0)
tgt_in = torch.LongTensor([example[1] for example in dataset])
tgt_out = torch.LongTensor([example[2] for example in dataset])
seg = torch.LongTensor([example[3] for example in dataset])
tgt_seg = torch.LongTensor([example[4] for example in dataset])
generated_sentences = []
args.model.eval()
for i, (src_batch, tgt_in_batch, tgt_out_batch, seg_batch, tgt_seg_batch) in enumerate(batch_loader(args.batch_size, src, tgt_in, tgt_out, seg, tgt_seg)):
src_batch = src_batch.to(args.device)
tgt_in_batch = torch.zeros(tgt_in_batch.size()[0], 1, dtype=torch.long, device=args.device)
tgt_seg_batch = torch.ones(tgt_in_batch.size()[0], 1, dtype=torch.long, device=args.device)
for j in range(tgt_in_batch.size()[0]):
tgt_in_batch[j][0] = args.tokenizer.vocab.get(CLS_TOKEN)
seg_batch = seg_batch.to(args.device)
with torch.no_grad():
memory_bank, emb = args.model(src_batch, None, seg_batch, tgt_seg_batch, only_use_encoder=True)
for _ in range(args.tgt_seq_length):
tgt_out_batch = tgt_in_batch
with torch.no_grad():
outputs = args.model(emb, (tgt_in_batch, tgt_out_batch, src_batch), None, tgt_seg_batch, memory_bank=memory_bank)
next_token_logits = outputs[:, -1]
next_tokens = torch.argmax(next_token_logits, dim=1).unsqueeze(1)
tgt_in_batch = torch.cat([tgt_in_batch, next_tokens], dim=1)
tgt_seg_batch = torch.ones(tgt_in_batch.size()[0], tgt_in_batch.size()[1], dtype=torch.long, device=args.device)
for j in range(len(outputs)):
sentence = "".join([args.tokenizer.inv_vocab[token_id.item()] for token_id in tgt_in_batch[j][1:]])
generated_sentences.append(sentence)
w_errs = 0
w_total = 0
for i, example in enumerate(dataset):
tgt = example[2]
tgt_token = "".join([args.tokenizer.inv_vocab[token_id] for token_id in tgt[:-2]])
generated_sentences[i] = generated_sentences[i].split(SEP_TOKEN)[0]
pred = generated_sentences[i].split("▁")
gold = tgt_token.split(SEP_TOKEN)[0].split("▁")
w_errs += editdistance.eval(pred, gold)
w_total += len(gold)
args.logger.info("WER. (Word_Errors/Total): {:.4f} ({}/{}) ".format(w_errs / w_total, w_errs, w_total))
return w_errs / w_total
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
finetune_opts(parser)
tokenizer_opts(parser)
parser.add_argument("--tgt_seq_length", type=int, default=50,
help="Output sequence length.")
args = parser.parse_args()
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
set_seed(args.seed)
# Build tokenizer.
args.tokenizer = str2tokenizer[args.tokenizer](args)
# Build classification model.
model = Speech2text(args)
# Load or initialize parameters.
load_or_initialize_parameters(args, model)
# Get logger.
args.logger = init_logger(args)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(args.device)
# Training phase.
trainset = read_dataset(args, args.train_path)
instances_num = len(trainset)
batch_size = args.batch_size
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1
args.logger.info("Batch size: {}".format(batch_size))
args.logger.info("The number of training instances: {}".format(instances_num))
optimizer, scheduler = build_optimizer(args, model)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
args.amp = amp
if torch.cuda.device_count() > 1:
args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
args.model = model
total_loss, result, best_result = 0.0, 0.0, 100.0
args.logger.info("Start training.")
for epoch in range(1, args.epochs_num + 1):
random.shuffle(trainset)
src = torch.stack([example[0] for example in trainset], dim=0)
tgt_in = torch.LongTensor([example[1] for example in trainset])
tgt_out = torch.LongTensor([example[2] for example in trainset])
seg = torch.LongTensor([example[3] for example in trainset])
tgt_seg = torch.LongTensor([example[4] for example in trainset])
model.train()
for i, (src_batch, tgt_in_batch, tgt_out_batch, seg_batch, tgt_seg_batch) in enumerate(batch_loader(batch_size, src, tgt_in, tgt_out, seg, tgt_seg)):
loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_in_batch, tgt_out_batch, seg_batch, tgt_seg_batch)
total_loss += loss.item()
if (i + 1) % args.report_steps == 0:
args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps))
total_loss = 0.0
result = evaluate(args, read_dataset(args, args.dev_path))
if result < best_result:
best_result = result
save_model(model, args.output_model_path)
# Evaluation phase.
if args.test_path is not None:
args.logger.info("Test set evaluation.")
if torch.cuda.device_count() > 1:
args.model.module.load_state_dict(torch.load(args.output_model_path))
else:
args.model.load_state_dict(torch.load(args.output_model_path))
evaluate(args, read_dataset(args, args.test_path))
if __name__ == "__main__":
main()