Spaces:
Runtime error
Runtime error
""" | |
This script provides an example to wrap TencentPretrain for speech-to-text fine-tuning. | |
""" | |
import sys | |
import os | |
import random | |
import argparse | |
import editdistance | |
import torch | |
import torchaudio | |
import torchaudio.compliance.kaldi as ta_kaldi | |
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
sys.path.append(tencentpretrain_dir) | |
from tencentpretrain.model_saver import save_model | |
from tencentpretrain.decoders import * | |
from tencentpretrain.targets import * | |
from tencentpretrain.utils import utterance_cmvn | |
from finetune.run_classifier import * | |
class Speech2text(torch.nn.Module): | |
def __init__(self, args): | |
super(Speech2text, self).__init__() | |
self.embedding = Embedding(args) | |
for embedding_name in args.embedding: | |
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab)) | |
self.embedding.update(tmp_emb, embedding_name) | |
self.encoder = str2encoder[args.encoder](args) | |
self.tgt_embedding = Embedding(args) | |
for embedding_name in args.tgt_embedding: | |
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab)) | |
self.tgt_embedding.update(tmp_emb, embedding_name) | |
self.decoder = str2decoder[args.decoder](args) | |
self.target = Target() | |
for target_name in args.target: | |
tmp_target = str2target[target_name](args, len(args.tokenizer.vocab)) | |
self.target.update(tmp_target, target_name) | |
if args.tie_weights: | |
self.target.lm.output_layer.weight = self.tgt_embedding.word.embedding.weight | |
def encode(self, src, seg): | |
emb = self.embedding(src, seg) | |
memory_bank = self.encoder(emb, seg) | |
return memory_bank, emb | |
def decode(self, emb, memory_bank, tgt, tgt_seg): | |
tgt_in, tgt_out, _ = tgt | |
decoder_emb = self.tgt_embedding(tgt_in, tgt_seg) | |
hidden = self.decoder(memory_bank, decoder_emb, [emb.abs()[:,:,0]]) | |
output = self.target.lm.output_layer(hidden) | |
return output | |
def forward(self, src, tgt, seg, tgt_seg, memory_bank=None, only_use_encoder=False): | |
if only_use_encoder: | |
return self.encode(src, seg) | |
if memory_bank is not None: | |
emb = src | |
return self.decode(emb, memory_bank, tgt, tgt_seg) | |
tgt_in, tgt_out, _ = tgt | |
memory_bank, emb = self.encode(src, seg) | |
if tgt_out is None: | |
output = self.decode(emb, memory_bank, tgt, None) | |
return None, output | |
else: | |
decoder_emb = self.tgt_embedding(tgt_in, tgt_seg) | |
hidden = self.decoder(memory_bank, decoder_emb, (seg,)) | |
loss = self.target(hidden, tgt_out, None)[0] | |
return loss, None | |
def read_dataset(args, path): | |
dataset, columns = [], {} | |
padding_vector = torch.FloatTensor(args.audio_feature_size * [0.0] if args.audio_feature_size > 1 else 0.0).unsqueeze(0) | |
with open(path, mode="r", encoding="utf-8") as f: | |
for line_id, line in enumerate(f): | |
if line_id == 0: | |
for i, column_name in enumerate(line.rstrip("\r\n").split("\t")): | |
columns[column_name] = i | |
continue | |
line = line.rstrip("\r\n").split("\t") | |
text, wav_path = line[columns["text"]], line[columns["wav_path"]] | |
tgt = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN]) + \ | |
args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text)) + \ | |
args.tokenizer.convert_tokens_to_ids([SEP_TOKEN]) | |
if len(tgt) > args.seq_length: | |
tgt = tgt[: args.seq_length] | |
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN]) | |
pad_num = args.seq_length - len(tgt) | |
tgt = tgt + PAD_ID * pad_num | |
waveform, sample_rate = torchaudio.load(wav_path) | |
waveform = waveform * (2 ** 15) # Kaldi compliance: 16-bit signed integers | |
feature = ta_kaldi.fbank(waveform, num_mel_bins=args.audio_feature_size, sample_frequency=sample_rate) | |
if "ceptral_normalize" in args.audio_preprocess: | |
feature = utterance_cmvn(feature) | |
difference = args.max_audio_frames - feature.size(0) | |
if difference < 0: | |
continue | |
else: | |
src_audio = torch.cat([feature] + [padding_vector] * difference) | |
seg_audio = [1] * int(feature.size(0) / args.conv_layers_num / 2) + [0] * (int(args.max_audio_frames /args.conv_layers_num / 2) - int(feature.size(0) / args.conv_layers_num / 2)) | |
tgt_in = tgt[:-1] | |
tgt_out = tgt[1:] | |
tgt_seg = [1] * (len(tgt[1:]) - pad_num) + [0] * pad_num | |
dataset.append((src_audio, tgt_in, tgt_out, seg_audio, tgt_seg)) | |
return dataset | |
def batch_loader(batch_size, src, tgt_in, tgt_out, seg, tgt_seg): | |
instances_num = src.size()[0] | |
for i in range(instances_num // batch_size): | |
src_batch = src[i * batch_size : (i + 1) * batch_size, :] | |
tgt_in_batch = tgt_in[i * batch_size : (i + 1) * batch_size, :] | |
tgt_out_batch = tgt_out[i * batch_size : (i + 1) * batch_size, :] | |
seg_batch = seg[i * batch_size : (i + 1) * batch_size, :] | |
tgt_seg_batch = tgt_seg[i * batch_size : (i + 1) * batch_size, :] | |
yield src_batch, tgt_in_batch, tgt_out_batch, seg_batch, tgt_seg_batch | |
if instances_num > instances_num // batch_size * batch_size: | |
src_batch = src[instances_num // batch_size * batch_size :, :] | |
tgt_in_batch = tgt_in[instances_num // batch_size * batch_size :, :] | |
tgt_out_batch = tgt_out[instances_num // batch_size * batch_size :, :] | |
seg_batch = seg[instances_num // batch_size * batch_size :, :] | |
tgt_seg_batch = tgt_seg[instances_num // batch_size * batch_size :, :] | |
yield src_batch, tgt_in_batch, tgt_out_batch, seg_batch, tgt_seg_batch | |
def train_model(args, model, optimizer, scheduler, src_batch, tgt_in_batch, tgt_out_batch, seg_batch, tgt_seg_batch): | |
model.zero_grad() | |
src_batch = src_batch.to(args.device) | |
tgt_in_batch = tgt_in_batch.to(args.device) | |
tgt_out_batch = tgt_out_batch.to(args.device) | |
seg_batch = seg_batch.to(args.device) | |
tgt_seg_batch = tgt_seg_batch.to(args.device) | |
loss, _ = model(src_batch, (tgt_in_batch, tgt_out_batch, src_batch), seg_batch, tgt_seg_batch) | |
if torch.cuda.device_count() > 1: | |
loss = torch.mean(loss) | |
if args.fp16: | |
with args.amp.scale_loss(loss, optimizer) as scaled_loss: | |
scaled_loss.backward() | |
else: | |
loss.backward() | |
optimizer.step() | |
scheduler.step() | |
return loss | |
def evaluate(args, dataset): | |
src = torch.stack([example[0] for example in dataset], dim=0) | |
tgt_in = torch.LongTensor([example[1] for example in dataset]) | |
tgt_out = torch.LongTensor([example[2] for example in dataset]) | |
seg = torch.LongTensor([example[3] for example in dataset]) | |
tgt_seg = torch.LongTensor([example[4] for example in dataset]) | |
generated_sentences = [] | |
args.model.eval() | |
for i, (src_batch, tgt_in_batch, tgt_out_batch, seg_batch, tgt_seg_batch) in enumerate(batch_loader(args.batch_size, src, tgt_in, tgt_out, seg, tgt_seg)): | |
src_batch = src_batch.to(args.device) | |
tgt_in_batch = torch.zeros(tgt_in_batch.size()[0], 1, dtype=torch.long, device=args.device) | |
tgt_seg_batch = torch.ones(tgt_in_batch.size()[0], 1, dtype=torch.long, device=args.device) | |
for j in range(tgt_in_batch.size()[0]): | |
tgt_in_batch[j][0] = args.tokenizer.vocab.get(CLS_TOKEN) | |
seg_batch = seg_batch.to(args.device) | |
with torch.no_grad(): | |
memory_bank, emb = args.model(src_batch, None, seg_batch, tgt_seg_batch, only_use_encoder=True) | |
for _ in range(args.tgt_seq_length): | |
tgt_out_batch = tgt_in_batch | |
with torch.no_grad(): | |
outputs = args.model(emb, (tgt_in_batch, tgt_out_batch, src_batch), None, tgt_seg_batch, memory_bank=memory_bank) | |
next_token_logits = outputs[:, -1] | |
next_tokens = torch.argmax(next_token_logits, dim=1).unsqueeze(1) | |
tgt_in_batch = torch.cat([tgt_in_batch, next_tokens], dim=1) | |
tgt_seg_batch = torch.ones(tgt_in_batch.size()[0], tgt_in_batch.size()[1], dtype=torch.long, device=args.device) | |
for j in range(len(outputs)): | |
sentence = "".join([args.tokenizer.inv_vocab[token_id.item()] for token_id in tgt_in_batch[j][1:]]) | |
generated_sentences.append(sentence) | |
w_errs = 0 | |
w_total = 0 | |
for i, example in enumerate(dataset): | |
tgt = example[2] | |
tgt_token = "".join([args.tokenizer.inv_vocab[token_id] for token_id in tgt[:-2]]) | |
generated_sentences[i] = generated_sentences[i].split(SEP_TOKEN)[0] | |
pred = generated_sentences[i].split("β") | |
gold = tgt_token.split(SEP_TOKEN)[0].split("β") | |
w_errs += editdistance.eval(pred, gold) | |
w_total += len(gold) | |
args.logger.info("WER. (Word_Errors/Total): {:.4f} ({}/{}) ".format(w_errs / w_total, w_errs, w_total)) | |
return w_errs / w_total | |
def main(): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
finetune_opts(parser) | |
tokenizer_opts(parser) | |
parser.add_argument("--tgt_seq_length", type=int, default=50, | |
help="Output sequence length.") | |
args = parser.parse_args() | |
# Load the hyperparameters from the config file. | |
args = load_hyperparam(args) | |
set_seed(args.seed) | |
# Build tokenizer. | |
args.tokenizer = str2tokenizer[args.tokenizer](args) | |
# Build classification model. | |
model = Speech2text(args) | |
# Load or initialize parameters. | |
load_or_initialize_parameters(args, model) | |
# Get logger. | |
args.logger = init_logger(args) | |
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(args.device) | |
# Training phase. | |
trainset = read_dataset(args, args.train_path) | |
instances_num = len(trainset) | |
batch_size = args.batch_size | |
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1 | |
args.logger.info("Batch size: {}".format(batch_size)) | |
args.logger.info("The number of training instances: {}".format(instances_num)) | |
optimizer, scheduler = build_optimizer(args, model) | |
if args.fp16: | |
try: | |
from apex import amp | |
except ImportError: | |
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") | |
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) | |
args.amp = amp | |
if torch.cuda.device_count() > 1: | |
args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) | |
model = torch.nn.DataParallel(model) | |
args.model = model | |
total_loss, result, best_result = 0.0, 0.0, 100.0 | |
args.logger.info("Start training.") | |
for epoch in range(1, args.epochs_num + 1): | |
random.shuffle(trainset) | |
src = torch.stack([example[0] for example in trainset], dim=0) | |
tgt_in = torch.LongTensor([example[1] for example in trainset]) | |
tgt_out = torch.LongTensor([example[2] for example in trainset]) | |
seg = torch.LongTensor([example[3] for example in trainset]) | |
tgt_seg = torch.LongTensor([example[4] for example in trainset]) | |
model.train() | |
for i, (src_batch, tgt_in_batch, tgt_out_batch, seg_batch, tgt_seg_batch) in enumerate(batch_loader(batch_size, src, tgt_in, tgt_out, seg, tgt_seg)): | |
loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_in_batch, tgt_out_batch, seg_batch, tgt_seg_batch) | |
total_loss += loss.item() | |
if (i + 1) % args.report_steps == 0: | |
args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps)) | |
total_loss = 0.0 | |
result = evaluate(args, read_dataset(args, args.dev_path)) | |
if result < best_result: | |
best_result = result | |
save_model(model, args.output_model_path) | |
# Evaluation phase. | |
if args.test_path is not None: | |
args.logger.info("Test set evaluation.") | |
if torch.cuda.device_count() > 1: | |
args.model.module.load_state_dict(torch.load(args.output_model_path)) | |
else: | |
args.model.load_state_dict(torch.load(args.output_model_path)) | |
evaluate(args, read_dataset(args, args.test_path)) | |
if __name__ == "__main__": | |
main() | |