VISOR-GPT / train /scripts /convert_bart_from_tencentpretrain_to_huggingface.py
szukevin's picture
upload
7900c16
raw
history blame
10 kB
import argparse
import collections
import torch
def convert_encoder_decoder_transformer_from_tencentpretrain_to_huggingface(input_model, output_model, layers_num, decoder_layers_num):
for i in range(layers_num):
output_model["model.encoder.layers." + str(i) + ".self_attn.q_proj.weight"] = \
input_model["encoder.transformer." + str(i) + ".self_attn.linear_layers.0.weight"]
output_model["model.encoder.layers." + str(i) + ".self_attn.q_proj.bias"] = \
input_model["encoder.transformer." + str(i) + ".self_attn.linear_layers.0.bias"]
output_model["model.encoder.layers." + str(i) + ".self_attn.k_proj.weight"] = \
input_model["encoder.transformer." + str(i) + ".self_attn.linear_layers.1.weight"]
output_model["model.encoder.layers." + str(i) + ".self_attn.k_proj.bias"] = \
input_model["encoder.transformer." + str(i) + ".self_attn.linear_layers.1.bias"]
output_model["model.encoder.layers." + str(i) + ".self_attn.v_proj.weight"] = \
input_model["encoder.transformer." + str(i) + ".self_attn.linear_layers.2.weight"]
output_model["model.encoder.layers." + str(i) + ".self_attn.v_proj.bias"] = \
input_model["encoder.transformer." + str(i) + ".self_attn.linear_layers.2.bias"]
output_model["model.encoder.layers." + str(i) + ".self_attn.out_proj.weight"] = \
input_model["encoder.transformer." + str(i) + ".self_attn.final_linear.weight"]
output_model["model.encoder.layers." + str(i) + ".self_attn.out_proj.bias"] = \
input_model["encoder.transformer." + str(i) + ".self_attn.final_linear.bias"]
output_model["model.encoder.layers." + str(i) + ".self_attn_layer_norm.weight"] = \
input_model["encoder.transformer." + str(i) + ".layer_norm_1.gamma"]
output_model["model.encoder.layers." + str(i) + ".self_attn_layer_norm.bias"] = \
input_model["encoder.transformer." + str(i) + ".layer_norm_1.beta"]
output_model["model.encoder.layers." + str(i) + ".fc1.weight"] = \
input_model["encoder.transformer." + str(i) + ".feed_forward.linear_1.weight"]
output_model["model.encoder.layers." + str(i) + ".fc1.bias"] = \
input_model["encoder.transformer." + str(i) + ".feed_forward.linear_1.bias"]
output_model["model.encoder.layers." + str(i) + ".fc2.weight"] = \
input_model["encoder.transformer." + str(i) + ".feed_forward.linear_2.weight"]
output_model["model.encoder.layers." + str(i) + ".fc2.bias"] = \
input_model["encoder.transformer." + str(i) + ".feed_forward.linear_2.bias"]
output_model["model.encoder.layers." + str(i) + ".final_layer_norm.weight"] = \
input_model["encoder.transformer." + str(i) + ".layer_norm_2.gamma"]
output_model["model.encoder.layers." + str(i) + ".final_layer_norm.bias"] = \
input_model["encoder.transformer." + str(i) + ".layer_norm_2.beta"]
for i in range(decoder_layers_num):
output_model["model.decoder.layers." + str(i) + ".self_attn.q_proj.weight"] = \
input_model["decoder.transformer_decoder." + str(i) + ".self_attn.linear_layers.0.weight"]
output_model["model.decoder.layers." + str(i) + ".self_attn.q_proj.bias"] = \
input_model["decoder.transformer_decoder." + str(i) + ".self_attn.linear_layers.0.bias"]
output_model["model.decoder.layers." + str(i) + ".self_attn.k_proj.weight"] = \
input_model["decoder.transformer_decoder." + str(i) + ".self_attn.linear_layers.1.weight"]
output_model["model.decoder.layers." + str(i) + ".self_attn.k_proj.bias"] = \
input_model["decoder.transformer_decoder." + str(i) + ".self_attn.linear_layers.1.bias"]
output_model["model.decoder.layers." + str(i) + ".self_attn.v_proj.weight"] = \
input_model["decoder.transformer_decoder." + str(i) + ".self_attn.linear_layers.2.weight"]
output_model["model.decoder.layers." + str(i) + ".self_attn.v_proj.bias"] = \
input_model["decoder.transformer_decoder." + str(i) + ".self_attn.linear_layers.2.bias"]
output_model["model.decoder.layers." + str(i) + ".self_attn.out_proj.weight"] = \
input_model["decoder.transformer_decoder." + str(i) + ".self_attn.final_linear.weight"]
output_model["model.decoder.layers." + str(i) + ".self_attn.out_proj.bias"] = \
input_model["decoder.transformer_decoder." + str(i) + ".self_attn.final_linear.bias"]
output_model["model.decoder.layers." + str(i) + ".self_attn_layer_norm.weight"] = \
input_model["decoder.transformer_decoder." + str(i) + ".layer_norm_1.gamma"]
output_model["model.decoder.layers." + str(i) + ".self_attn_layer_norm.bias"] = \
input_model["decoder.transformer_decoder." + str(i) + ".layer_norm_1.beta"]
output_model["model.decoder.layers." + str(i) + ".encoder_attn.q_proj.weight"] = \
input_model["decoder.transformer_decoder." + str(i) + ".context_attn.linear_layers.0.weight"]
output_model["model.decoder.layers." + str(i) + ".encoder_attn.q_proj.bias"] = \
input_model["decoder.transformer_decoder." + str(i) + ".context_attn.linear_layers.0.bias"]
output_model["model.decoder.layers." + str(i) + ".encoder_attn.k_proj.weight"] = \
input_model["decoder.transformer_decoder." + str(i) + ".context_attn.linear_layers.1.weight"]
output_model["model.decoder.layers." + str(i) + ".encoder_attn.k_proj.bias"] = \
input_model["decoder.transformer_decoder." + str(i) + ".context_attn.linear_layers.1.bias"]
output_model["model.decoder.layers." + str(i) + ".encoder_attn.v_proj.weight"] = \
input_model["decoder.transformer_decoder." + str(i) + ".context_attn.linear_layers.2.weight"]
output_model["model.decoder.layers." + str(i) + ".encoder_attn.v_proj.bias"] = \
input_model["decoder.transformer_decoder." + str(i) + ".context_attn.linear_layers.2.bias"]
output_model["model.decoder.layers." + str(i) + ".encoder_attn.out_proj.weight"] = \
input_model["decoder.transformer_decoder." + str(i) + ".context_attn.final_linear.weight"]
output_model["model.decoder.layers." + str(i) + ".encoder_attn.out_proj.bias"] = \
input_model["decoder.transformer_decoder." + str(i) + ".context_attn.final_linear.bias"]
output_model["model.decoder.layers." + str(i) + ".encoder_attn_layer_norm.weight"] = \
input_model["decoder.transformer_decoder." + str(i) + ".layer_norm_2.gamma"]
output_model["model.decoder.layers." + str(i) + ".encoder_attn_layer_norm.bias"] = \
input_model["decoder.transformer_decoder." + str(i) + ".layer_norm_2.beta"]
output_model["model.decoder.layers." + str(i) + ".fc1.weight"] = \
input_model["decoder.transformer_decoder." + str(i) + ".feed_forward.linear_1.weight"]
output_model["model.decoder.layers." + str(i) + ".fc1.bias"] = \
input_model["decoder.transformer_decoder." + str(i) + ".feed_forward.linear_1.bias"]
output_model["model.decoder.layers." + str(i) + ".fc2.weight"] = \
input_model["decoder.transformer_decoder." + str(i) + ".feed_forward.linear_2.weight"]
output_model["model.decoder.layers." + str(i) + ".fc2.bias"] = \
input_model["decoder.transformer_decoder." + str(i) + ".feed_forward.linear_2.bias"]
output_model["model.decoder.layers." + str(i) + ".final_layer_norm.weight"] = \
input_model["decoder.transformer_decoder." + str(i) + ".layer_norm_3.gamma"]
output_model["model.decoder.layers." + str(i) + ".final_layer_norm.bias"] = \
input_model["decoder.transformer_decoder." + str(i) + ".layer_norm_3.beta"]
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--input_model_path", type=str, default="models/input_model.bin",
help=".")
parser.add_argument("--output_model_path", type=str, default="models/output_model.bin",
help=".")
parser.add_argument("--layers_num", type=int, default=6, help=".")
parser.add_argument("--decoder_layers_num", type=int, default=6, help=".")
args = parser.parse_args()
input_model = torch.load(args.input_model_path, map_location="cpu")
output_model = collections.OrderedDict()
emb_size = input_model["embedding.word.embedding.weight"].shape[1]
output_model["model.shared.weight"] = input_model["embedding.word.embedding.weight"]
output_model["model.encoder.embed_positions.weight"] = torch.cat((torch.zeros(2, emb_size), input_model["embedding.pos.embedding.weight"]), 0)
output_model["model.decoder.embed_positions.weight"] = torch.cat((torch.zeros(2, emb_size), input_model["tgt_embedding.pos.embedding.weight"]), 0)
output_model["model.encoder.embed_tokens.weight"] = input_model["embedding.word.embedding.weight"]
output_model["model.decoder.embed_tokens.weight"] = input_model["tgt_embedding.word.embedding.weight"]
output_model["lm_head.weight"] = input_model["target.lm.output_layer.weight"]
output_model["final_logits_bias"] = input_model["target.lm.output_layer.bias"].unsqueeze(0)
convert_encoder_decoder_transformer_from_tencentpretrain_to_huggingface(input_model, output_model, args.layers_num, args.decoder_layers_num)
output_model["model.encoder.layernorm_embedding.weight"] = input_model["embedding.layer_norm.gamma"]
output_model["model.encoder.layernorm_embedding.bias"] = input_model["embedding.layer_norm.beta"]
output_model["model.decoder.layernorm_embedding.weight"] = input_model["tgt_embedding.layer_norm.gamma"]
output_model["model.decoder.layernorm_embedding.bias"] = input_model["tgt_embedding.layer_norm.beta"]
torch.save(output_model, args.output_model_path)
if __name__ == "__main__":
main()