Spaces:
Runtime error
Runtime error
import sys | |
import os | |
import argparse | |
import collections | |
import torch | |
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
sys.path.insert(0, tencentpretrain_dir) | |
from scripts.convert_bart_from_tencentpretrain_to_huggingface import \ | |
convert_encoder_decoder_transformer_from_tencentpretrain_to_huggingface | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
parser.add_argument("--input_model_path", type=str, default="models/input_model.bin", | |
help=".") | |
parser.add_argument("--output_model_path", type=str, default="models/output_model.bin", | |
help=".") | |
parser.add_argument("--layers_num", type=int, default=12, help=".") | |
parser.add_argument("--decoder_layers_num", type=int, default=12, help=".") | |
args = parser.parse_args() | |
input_model = torch.load(args.input_model_path) | |
output_model = collections.OrderedDict() | |
output_model["model.shared.weight"] = input_model["embedding.word.embedding.weight"] | |
output_model["model.encoder.embed_positions.weight"] = input_model["embedding.sinusoidalpos.pe"].squeeze(1) | |
output_model["model.decoder.embed_positions.weight"] = input_model["tgt_embedding.sinusoidalpos.pe"].squeeze(1) | |
output_model["model.encoder.embed_tokens.weight"] = input_model["embedding.word.embedding.weight"] | |
output_model["model.decoder.embed_tokens.weight"] = input_model["tgt_embedding.word.embedding.weight"] | |
output_model["lm_head.weight"] = input_model["target.lm.output_layer.weight"] | |
output_model["final_logits_bias"] = input_model["target.lm.output_layer.bias"].unsqueeze(0) | |
convert_encoder_decoder_transformer_from_tencentpretrain_to_huggingface(input_model, output_model, args.layers_num, args.decoder_layers_num) | |
output_model["model.encoder.layer_norm.weight"] = input_model["encoder.layer_norm.gamma"] | |
output_model["model.encoder.layer_norm.bias"] = input_model["encoder.layer_norm.beta"] | |
output_model["model.decoder.layer_norm.weight"] = input_model["decoder.layer_norm.gamma"] | |
output_model["model.decoder.layer_norm.bias"] = input_model["decoder.layer_norm.beta"] | |
torch.save(output_model, args.output_model_path) | |