Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
from tencentpretrain.utils.misc import * | |
class RnnEncoder(nn.Module): | |
""" | |
RNN encoder. | |
""" | |
def __init__(self, args): | |
super(RnnEncoder, self).__init__() | |
self.bidirectional = args.bidirectional | |
if self.bidirectional: | |
assert args.hidden_size % 2 == 0 | |
self.hidden_size = args.hidden_size // 2 | |
else: | |
self.hidden_size = args.hidden_size | |
self.layers_num = args.layers_num | |
self.rnn = nn.RNN(input_size=args.emb_size, | |
hidden_size=self.hidden_size, | |
num_layers=args.layers_num, | |
dropout=args.dropout, | |
batch_first=True, | |
bidirectional=self.bidirectional) | |
self.drop = nn.Dropout(args.dropout) | |
def forward(self, emb, _): | |
self.rnn.flatten_parameters() | |
hidden = self.init_hidden(emb.size(0), emb.device) | |
output, hidden = self.rnn(emb, hidden) | |
output = self.drop(output) | |
return output | |
def init_hidden(self, batch_size, device): | |
if self.bidirectional: | |
return torch.zeros(self.layers_num*2, batch_size, self.hidden_size, device=device) | |
else: | |
return torch.zeros(self.layers_num, batch_size, self.hidden_size, device=device) | |
class LstmEncoder(RnnEncoder): | |
""" | |
LSTM encoder. | |
""" | |
def __init__(self, args): | |
super(LstmEncoder, self).__init__(args) | |
self.rnn = nn.LSTM(input_size=args.emb_size, | |
hidden_size=self.hidden_size, | |
num_layers=args.layers_num, | |
dropout=args.dropout, | |
batch_first=True, | |
bidirectional=self.bidirectional) | |
def init_hidden(self, batch_size, device): | |
if self.bidirectional: | |
return (torch.zeros(self.layers_num*2, batch_size, self.hidden_size, device=device), | |
torch.zeros(self.layers_num*2, batch_size, self.hidden_size, device=device)) | |
else: | |
return (torch.zeros(self.layers_num, batch_size, self.hidden_size, device=device), | |
torch.zeros(self.layers_num, batch_size, self.hidden_size, device=device)) | |
class GruEncoder(RnnEncoder): | |
""" | |
GRU encoder. | |
""" | |
def __init__(self, args): | |
super(GruEncoder, self).__init__(args) | |
self.rnn = nn.GRU(input_size=args.emb_size, | |
hidden_size=self.hidden_size, | |
num_layers=args.layers_num, | |
dropout=args.dropout, | |
batch_first=True, | |
bidirectional=self.bidirectional) | |
class BirnnEncoder(nn.Module): | |
""" | |
Bi-directional RNN encoder. | |
""" | |
def __init__(self, args): | |
super(BirnnEncoder, self).__init__() | |
assert args.hidden_size % 2 == 0 | |
self.hidden_size = args.hidden_size // 2 | |
self.layers_num = args.layers_num | |
self.rnn_forward = nn.RNN(input_size=args.emb_size, | |
hidden_size=self.hidden_size, | |
num_layers=args.layers_num, | |
dropout=args.dropout, | |
batch_first=True) | |
self.rnn_backward = nn.RNN(input_size=args.emb_size, | |
hidden_size=self.hidden_size, | |
num_layers=args.layers_num, | |
dropout=args.dropout, | |
batch_first=True) | |
self.drop = nn.Dropout(args.dropout) | |
def forward(self, emb, _): | |
# Forward. | |
self.rnn_forward.flatten_parameters() | |
emb_forward = emb | |
hidden_forward = self.init_hidden(emb_forward.size(0), emb_forward.device) | |
output_forward, hidden_forward = self.rnn_forward(emb_forward, hidden_forward) | |
output_forward = self.drop(output_forward) | |
# Backward. | |
self.rnn_backward.flatten_parameters() | |
emb_backward = flip(emb, 1) | |
hidden_backward = self.init_hidden(emb_backward.size(0), emb_backward.device) | |
output_backward, hidden_backward = self.rnn_backward(emb_backward, hidden_backward) | |
output_backward = self.drop(output_backward) | |
output_backward = flip(output_backward, 1) | |
return torch.cat([output_forward, output_backward], 2) | |
def init_hidden(self, batch_size, device): | |
return torch.zeros(self.layers_num, batch_size, self.hidden_size, device=device) | |
class BilstmEncoder(BirnnEncoder): | |
""" | |
Bi-directional LSTM encoder. | |
""" | |
def __init__(self, args): | |
super(BilstmEncoder, self).__init__(args) | |
self.rnn_forward = nn.LSTM(input_size=args.emb_size, | |
hidden_size=self.hidden_size, | |
num_layers=args.layers_num, | |
dropout=args.dropout, | |
batch_first=True) | |
self.rnn_backward = nn.LSTM(input_size=args.emb_size, | |
hidden_size=self.hidden_size, | |
num_layers=args.layers_num, | |
dropout=args.dropout, | |
batch_first=True) | |
def init_hidden(self, batch_size, device): | |
return (torch.zeros(self.layers_num, batch_size, self.hidden_size, device=device), | |
torch.zeros(self.layers_num, batch_size, self.hidden_size, device=device)) | |
class BigruEncoder(BirnnEncoder): | |
""" | |
Bi-directional GRU encoder. | |
""" | |
def __init__(self, args): | |
super(BigruEncoder, self).__init__(args) | |
self.rnn_forward = nn.GRU(input_size=args.emb_size, | |
hidden_size=self.hidden_size, | |
num_layers=args.layers_num, | |
dropout=args.dropout, | |
batch_first=True) | |
self.rnn_backward = nn.GRU(input_size=args.emb_size, | |
hidden_size=self.hidden_size, | |
num_layers=args.layers_num, | |
dropout=args.dropout, | |
batch_first=True) | |