Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
from tencentpretrain.layers.layer_norm import LayerNorm | |
from tencentpretrain.utils import * | |
class MlmTarget(nn.Module): | |
""" | |
BERT exploits masked language modeling (MLM) | |
and next sentence prediction (NSP) for pretraining. | |
""" | |
def __init__(self, args, vocab_size): | |
super(MlmTarget, self).__init__() | |
self.vocab_size = vocab_size | |
self.hidden_size = args.hidden_size | |
self.emb_size = args.emb_size | |
self.factorized_embedding_parameterization = args.factorized_embedding_parameterization | |
self.act = str2act[args.hidden_act] | |
if self.factorized_embedding_parameterization: | |
self.linear_1 = nn.Linear(args.hidden_size, args.emb_size) | |
self.layer_norm = LayerNorm(args.emb_size) | |
self.linear_2 = nn.Linear(args.emb_size, self.vocab_size) | |
else: | |
self.linear_1 = nn.Linear(args.hidden_size, args.hidden_size) | |
self.layer_norm = LayerNorm(args.hidden_size) | |
self.linear_2 = nn.Linear(args.hidden_size, self.vocab_size) | |
self.softmax = nn.LogSoftmax(dim=-1) | |
self.criterion = nn.NLLLoss() | |
def mlm(self, memory_bank, tgt_mlm): | |
# Masked language modeling (MLM) with full softmax prediction. | |
output_mlm = self.act(self.linear_1(memory_bank)) | |
output_mlm = self.layer_norm(output_mlm) | |
if self.factorized_embedding_parameterization: | |
output_mlm = output_mlm.contiguous().view(-1, self.emb_size) | |
else: | |
output_mlm = output_mlm.contiguous().view(-1, self.hidden_size) | |
tgt_mlm = tgt_mlm.contiguous().view(-1) | |
output_mlm = output_mlm[tgt_mlm > 0, :] | |
tgt_mlm = tgt_mlm[tgt_mlm > 0] | |
output_mlm = self.linear_2(output_mlm) | |
output_mlm = self.softmax(output_mlm) | |
denominator = torch.tensor(output_mlm.size(0) + 1e-6) | |
if output_mlm.size(0) == 0: | |
correct_mlm = torch.tensor(0.0) | |
else: | |
correct_mlm = torch.sum((output_mlm.argmax(dim=-1).eq(tgt_mlm)).float()) | |
loss_mlm = self.criterion(output_mlm, tgt_mlm) | |
return loss_mlm, correct_mlm, denominator | |
def forward(self, memory_bank, tgt, seg): | |
""" | |
Args: | |
memory_bank: [batch_size x seq_length x hidden_size] | |
tgt: [batch_size x seq_length] | |
Returns: | |
loss: Masked language modeling loss. | |
correct: Number of words that are predicted correctly. | |
denominator: Number of masked words. | |
""" | |
# Masked language model (MLM). | |
loss, correct, denominator = self.mlm(memory_bank, tgt) | |
return loss, correct, denominator | |