Spaces:
Runtime error
Runtime error
""" | |
This script provides an example to wrap TencentPretrain for classification with siamese network. | |
""" | |
import sys | |
import os | |
import random | |
import argparse | |
import collections | |
import torch | |
import torch.nn as nn | |
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
sys.path.append(tencentpretrain_dir) | |
from tencentpretrain.embeddings import * | |
from tencentpretrain.encoders import * | |
from tencentpretrain.targets import * | |
from tencentpretrain.utils.vocab import Vocab | |
from tencentpretrain.utils.constants import * | |
from tencentpretrain.utils import * | |
from tencentpretrain.utils.optimizers import * | |
from tencentpretrain.utils.config import load_hyperparam | |
from tencentpretrain.utils.seed import set_seed | |
from tencentpretrain.utils.logging import init_logger | |
from tencentpretrain.utils.misc import pooling | |
from tencentpretrain.model_saver import save_model | |
from tencentpretrain.opts import finetune_opts, tokenizer_opts | |
from finetune.run_classifier import count_labels_num, build_optimizer | |
class SiameseClassifier(nn.Module): | |
def __init__(self, args): | |
super(SiameseClassifier, self).__init__() | |
self.embedding = Embedding(args) | |
for embedding_name in args.embedding: | |
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab)) | |
self.embedding.update(tmp_emb, embedding_name) | |
self.encoder = DualEncoder(args) | |
self.classifier = nn.Linear(4 * args.stream_0["hidden_size"], args.labels_num) | |
self.pooling_type = args.pooling | |
def forward(self, src, tgt, seg): | |
""" | |
Args: | |
src: [batch_size x seq_length] | |
tgt: [batch_size] | |
seg: [batch_size x seq_length] | |
""" | |
# Embedding. | |
emb = self.embedding(src, seg) | |
# Encoder. | |
output = self.encoder(emb, seg) | |
# Target. | |
features_0, features_1 = output | |
features_0 = pooling(features_0, seg[0], self.pooling_type) | |
features_1 = pooling(features_1, seg[1], self.pooling_type) | |
vectors_concat = [] | |
# concatenation | |
vectors_concat.append(features_0) | |
vectors_concat.append(features_1) | |
# difference: | |
vectors_concat.append(torch.abs(features_0 - features_1)) | |
# multiplication: | |
vectors_concat.append(features_0 * features_1) | |
features = torch.cat(vectors_concat, 1) | |
logits = self.classifier(features) | |
if tgt is not None: | |
loss = nn.NLLLoss()(nn.LogSoftmax(dim=-1)(logits), tgt.view(-1)) | |
return loss, logits | |
else: | |
return None, logits | |
def load_or_initialize_parameters(args, model): | |
if args.pretrained_model_path is not None: | |
# Initialize with pretrained model. | |
state_dict = torch.load(args.pretrained_model_path, map_location="cpu") | |
load_siamese_weights = False | |
for key in state_dict.keys(): | |
if key.find("embedding_0") != -1: | |
load_siamese_weights = True | |
break | |
if not load_siamese_weights: | |
siamese_state_dict = collections.OrderedDict() | |
for key in state_dict.keys(): | |
if key.split('.')[0] == "embedding": | |
siamese_state_dict["embedding.embedding_0." + ".".join(key.split('.')[1:])] = state_dict[key] | |
siamese_state_dict["embedding.embedding_1." + ".".join(key.split('.')[1:])] = state_dict[key] | |
if key.split('.')[0] == "encoder": | |
siamese_state_dict["encoder.encoder_0." + ".".join(key.split('.')[1:])] = state_dict[key] | |
siamese_state_dict["encoder.encoder_1." + ".".join(key.split('.')[1:])] = state_dict[key] | |
model.load_state_dict(siamese_state_dict, strict=False) | |
else: | |
model.load_state_dict(state_dict, strict=False) | |
else: | |
# Initialize with normal distribution. | |
for n, p in list(model.named_parameters()): | |
if "gamma" not in n and "beta" not in n: | |
p.data.normal_(0, 0.02) | |
def batch_loader(batch_size, src, tgt, seg): | |
instances_num = tgt.size()[0] | |
src_a, src_b = src | |
seg_a, seg_b = seg | |
for i in range(instances_num // batch_size): | |
src_a_batch = src_a[i * batch_size : (i + 1) * batch_size, :] | |
src_b_batch = src_b[i * batch_size : (i + 1) * batch_size, :] | |
tgt_batch = tgt[i * batch_size : (i + 1) * batch_size] | |
seg_a_batch = seg_a[i * batch_size : (i + 1) * batch_size, :] | |
seg_b_batch = seg_b[i * batch_size : (i + 1) * batch_size, :] | |
yield (src_a_batch, src_b_batch), tgt_batch, (seg_a_batch, seg_b_batch) | |
if instances_num > instances_num // batch_size * batch_size: | |
src_a_batch = src_a[instances_num // batch_size * batch_size :, :] | |
src_b_batch = src_b[instances_num // batch_size * batch_size :, :] | |
tgt_batch = tgt[instances_num // batch_size * batch_size :] | |
seg_a_batch = seg_a[instances_num // batch_size * batch_size :, :] | |
seg_b_batch = seg_b[instances_num // batch_size * batch_size :, :] | |
yield (src_a_batch, src_b_batch), tgt_batch, (seg_a_batch, seg_b_batch) | |
def read_dataset(args, path): | |
dataset, columns = [], {} | |
with open(path, mode="r", encoding="utf-8") as f: | |
for line_id, line in enumerate(f): | |
if line_id == 0: | |
for i, column_name in enumerate(line.rstrip("\r\n").split("\t")): | |
columns[column_name] = i | |
continue | |
line = line.rstrip("\r\n").split("\t") | |
tgt = int(line[columns["label"]]) | |
text_a, text_b = line[columns["text_a"]], line[columns["text_b"]] | |
src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN]) | |
src_b = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_b) + [SEP_TOKEN]) | |
seg_a = [1] * len(src_a) | |
seg_b = [1] * len(src_b) | |
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0] | |
if len(src_a) >= args.seq_length: | |
src_a = src_a[:args.seq_length] | |
seg_a = seg_a[:args.seq_length] | |
while len(src_a) < args.seq_length: | |
src_a.append(PAD_ID) | |
seg_a.append(0) | |
if len(src_b) >= args.seq_length: | |
src_b = src_b[:args.seq_length] | |
seg_b = seg_b[:args.seq_length] | |
while len(src_b) < args.seq_length: | |
src_b.append(PAD_ID) | |
seg_b.append(0) | |
dataset.append(((src_a, src_b), tgt, (seg_a, seg_b))) | |
return dataset | |
def train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch): | |
model.zero_grad() | |
src_a_batch, src_b_batch = src_batch | |
seg_a_batch, seg_b_batch = seg_batch | |
src_a_batch = src_a_batch.to(args.device) | |
src_b_batch = src_b_batch.to(args.device) | |
tgt_batch = tgt_batch.to(args.device) | |
seg_a_batch = seg_a_batch.to(args.device) | |
seg_b_batch = seg_b_batch.to(args.device) | |
loss, _ = model((src_a_batch, src_b_batch), tgt_batch, (seg_a_batch, seg_b_batch)) | |
if torch.cuda.device_count() > 1: | |
loss = torch.mean(loss) | |
if args.fp16: | |
with args.amp.scale_loss(loss, optimizer) as scaled_loss: | |
scaled_loss.backward() | |
else: | |
loss.backward() | |
optimizer.step() | |
scheduler.step() | |
return loss | |
def evaluate(args, dataset): | |
src_a = torch.LongTensor([example[0][0] for example in dataset]) | |
src_b = torch.LongTensor([example[0][1] for example in dataset]) | |
tgt = torch.LongTensor([example[1] for example in dataset]) | |
seg_a = torch.LongTensor([example[2][0] for example in dataset]) | |
seg_b = torch.LongTensor([example[2][1] for example in dataset]) | |
batch_size = args.batch_size | |
correct = 0 | |
# Confusion matrix. | |
confusion = torch.zeros(args.labels_num, args.labels_num, dtype=torch.long) | |
args.model.eval() | |
for i, (src_batch, tgt_batch, seg_batch) in enumerate(batch_loader(batch_size, (src_a, src_b), tgt, (seg_a, seg_b))): | |
src_a_batch, src_b_batch = src_batch | |
seg_a_batch, seg_b_batch = seg_batch | |
src_a_batch = src_a_batch.to(args.device) | |
src_b_batch = src_b_batch.to(args.device) | |
tgt_batch = tgt_batch.to(args.device) | |
seg_a_batch = seg_a_batch.to(args.device) | |
seg_b_batch = seg_b_batch.to(args.device) | |
with torch.no_grad(): | |
_, logits = args.model((src_a_batch, src_b_batch), None, (seg_a_batch, seg_b_batch)) | |
pred = torch.argmax(nn.Softmax(dim=1)(logits), dim=1) | |
gold = tgt_batch | |
for j in range(pred.size()[0]): | |
confusion[pred[j], gold[j]] += 1 | |
correct += torch.sum(pred == gold).item() | |
args.logger.debug("Confusion matrix:") | |
args.logger.debug(confusion) | |
args.logger.debug("Report precision, recall, and f1:") | |
eps = 1e-9 | |
for i in range(confusion.size()[0]): | |
p = confusion[i, i].item() / (confusion[i, :].sum().item() + eps) | |
r = confusion[i, i].item() / (confusion[:, i].sum().item() + eps) | |
f1 = 2 * p * r / (p + r + eps) | |
args.logger.debug("Label {}: {:.3f}, {:.3f}, {:.3f}".format(i, p, r, f1)) | |
args.logger.info("Acc. (Correct/Total): {:.4f} ({}/{}) ".format(correct / len(dataset), correct, len(dataset))) | |
return correct / len(dataset), confusion | |
def main(): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
finetune_opts(parser) | |
tokenizer_opts(parser) | |
args = parser.parse_args() | |
# Load the hyperparameters from the config file. | |
args = load_hyperparam(args) | |
set_seed(args.seed) | |
# Count the number of labels. | |
args.labels_num = count_labels_num(args.train_path) | |
# Build tokenizer. | |
args.tokenizer = str2tokenizer[args.tokenizer](args) | |
# Build classification model. | |
model = SiameseClassifier(args) | |
# Load or initialize parameters. | |
load_or_initialize_parameters(args, model) | |
# Get logger. | |
args.logger = init_logger(args) | |
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(args.device) | |
# Training phase. | |
trainset = read_dataset(args, args.train_path) | |
instances_num = len(trainset) | |
batch_size = args.batch_size | |
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1 | |
args.logger.info("Batch size: {}".format(batch_size)) | |
args.logger.info("The number of training instances: {}".format(instances_num)) | |
optimizer, scheduler = build_optimizer(args, model) | |
if args.fp16: | |
try: | |
from apex import amp | |
except ImportError: | |
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") | |
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) | |
args.amp = amp | |
if torch.cuda.device_count() > 1: | |
args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) | |
model = torch.nn.DataParallel(model) | |
args.model = model | |
total_loss, result, best_result = 0.0, 0.0, 0.0 | |
args.logger.info("Start training.") | |
for epoch in range(1, args.epochs_num + 1): | |
random.shuffle(trainset) | |
src_a = torch.LongTensor([example[0][0] for example in trainset]) | |
src_b = torch.LongTensor([example[0][1] for example in trainset]) | |
tgt = torch.LongTensor([example[1] for example in trainset]) | |
seg_a = torch.LongTensor([example[2][0] for example in trainset]) | |
seg_b = torch.LongTensor([example[2][1] for example in trainset]) | |
model.train() | |
for i, (src_batch, tgt_batch, seg_batch) in enumerate(batch_loader(batch_size, (src_a, src_b), tgt, (seg_a, seg_b))): | |
loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch) | |
total_loss += loss.item() | |
if (i + 1) % args.report_steps == 0: | |
args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps)) | |
total_loss = 0.0 | |
result = evaluate(args, read_dataset(args, args.dev_path)) | |
if result[0] > best_result: | |
best_result = result[0] | |
save_model(model, args.output_model_path) | |
# Evaluation phase. | |
if args.test_path is not None: | |
args.logger.info("Test set evaluation.") | |
if torch.cuda.device_count() > 1: | |
args.model.module.load_state_dict(torch.load(args.output_model_path)) | |
else: | |
args.model.load_state_dict(torch.load(args.output_model_path)) | |
evaluate(args, read_dataset(args, args.test_path)) | |
if __name__ == "__main__": | |
main() | |