VISOR-GPT / train /finetune /run_classifier_siamese.py
szukevin's picture
upload
7900c16
raw
history blame
12.9 kB
"""
This script provides an example to wrap TencentPretrain for classification with siamese network.
"""
import sys
import os
import random
import argparse
import collections
import torch
import torch.nn as nn
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)
from tencentpretrain.embeddings import *
from tencentpretrain.encoders import *
from tencentpretrain.targets import *
from tencentpretrain.utils.vocab import Vocab
from tencentpretrain.utils.constants import *
from tencentpretrain.utils import *
from tencentpretrain.utils.optimizers import *
from tencentpretrain.utils.config import load_hyperparam
from tencentpretrain.utils.seed import set_seed
from tencentpretrain.utils.logging import init_logger
from tencentpretrain.utils.misc import pooling
from tencentpretrain.model_saver import save_model
from tencentpretrain.opts import finetune_opts, tokenizer_opts
from finetune.run_classifier import count_labels_num, build_optimizer
class SiameseClassifier(nn.Module):
def __init__(self, args):
super(SiameseClassifier, self).__init__()
self.embedding = Embedding(args)
for embedding_name in args.embedding:
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab))
self.embedding.update(tmp_emb, embedding_name)
self.encoder = DualEncoder(args)
self.classifier = nn.Linear(4 * args.stream_0["hidden_size"], args.labels_num)
self.pooling_type = args.pooling
def forward(self, src, tgt, seg):
"""
Args:
src: [batch_size x seq_length]
tgt: [batch_size]
seg: [batch_size x seq_length]
"""
# Embedding.
emb = self.embedding(src, seg)
# Encoder.
output = self.encoder(emb, seg)
# Target.
features_0, features_1 = output
features_0 = pooling(features_0, seg[0], self.pooling_type)
features_1 = pooling(features_1, seg[1], self.pooling_type)
vectors_concat = []
# concatenation
vectors_concat.append(features_0)
vectors_concat.append(features_1)
# difference:
vectors_concat.append(torch.abs(features_0 - features_1))
# multiplication:
vectors_concat.append(features_0 * features_1)
features = torch.cat(vectors_concat, 1)
logits = self.classifier(features)
if tgt is not None:
loss = nn.NLLLoss()(nn.LogSoftmax(dim=-1)(logits), tgt.view(-1))
return loss, logits
else:
return None, logits
def load_or_initialize_parameters(args, model):
if args.pretrained_model_path is not None:
# Initialize with pretrained model.
state_dict = torch.load(args.pretrained_model_path, map_location="cpu")
load_siamese_weights = False
for key in state_dict.keys():
if key.find("embedding_0") != -1:
load_siamese_weights = True
break
if not load_siamese_weights:
siamese_state_dict = collections.OrderedDict()
for key in state_dict.keys():
if key.split('.')[0] == "embedding":
siamese_state_dict["embedding.embedding_0." + ".".join(key.split('.')[1:])] = state_dict[key]
siamese_state_dict["embedding.embedding_1." + ".".join(key.split('.')[1:])] = state_dict[key]
if key.split('.')[0] == "encoder":
siamese_state_dict["encoder.encoder_0." + ".".join(key.split('.')[1:])] = state_dict[key]
siamese_state_dict["encoder.encoder_1." + ".".join(key.split('.')[1:])] = state_dict[key]
model.load_state_dict(siamese_state_dict, strict=False)
else:
model.load_state_dict(state_dict, strict=False)
else:
# Initialize with normal distribution.
for n, p in list(model.named_parameters()):
if "gamma" not in n and "beta" not in n:
p.data.normal_(0, 0.02)
def batch_loader(batch_size, src, tgt, seg):
instances_num = tgt.size()[0]
src_a, src_b = src
seg_a, seg_b = seg
for i in range(instances_num // batch_size):
src_a_batch = src_a[i * batch_size : (i + 1) * batch_size, :]
src_b_batch = src_b[i * batch_size : (i + 1) * batch_size, :]
tgt_batch = tgt[i * batch_size : (i + 1) * batch_size]
seg_a_batch = seg_a[i * batch_size : (i + 1) * batch_size, :]
seg_b_batch = seg_b[i * batch_size : (i + 1) * batch_size, :]
yield (src_a_batch, src_b_batch), tgt_batch, (seg_a_batch, seg_b_batch)
if instances_num > instances_num // batch_size * batch_size:
src_a_batch = src_a[instances_num // batch_size * batch_size :, :]
src_b_batch = src_b[instances_num // batch_size * batch_size :, :]
tgt_batch = tgt[instances_num // batch_size * batch_size :]
seg_a_batch = seg_a[instances_num // batch_size * batch_size :, :]
seg_b_batch = seg_b[instances_num // batch_size * batch_size :, :]
yield (src_a_batch, src_b_batch), tgt_batch, (seg_a_batch, seg_b_batch)
def read_dataset(args, path):
dataset, columns = [], {}
with open(path, mode="r", encoding="utf-8") as f:
for line_id, line in enumerate(f):
if line_id == 0:
for i, column_name in enumerate(line.rstrip("\r\n").split("\t")):
columns[column_name] = i
continue
line = line.rstrip("\r\n").split("\t")
tgt = int(line[columns["label"]])
text_a, text_b = line[columns["text_a"]], line[columns["text_b"]]
src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN])
src_b = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_b) + [SEP_TOKEN])
seg_a = [1] * len(src_a)
seg_b = [1] * len(src_b)
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0]
if len(src_a) >= args.seq_length:
src_a = src_a[:args.seq_length]
seg_a = seg_a[:args.seq_length]
while len(src_a) < args.seq_length:
src_a.append(PAD_ID)
seg_a.append(0)
if len(src_b) >= args.seq_length:
src_b = src_b[:args.seq_length]
seg_b = seg_b[:args.seq_length]
while len(src_b) < args.seq_length:
src_b.append(PAD_ID)
seg_b.append(0)
dataset.append(((src_a, src_b), tgt, (seg_a, seg_b)))
return dataset
def train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch):
model.zero_grad()
src_a_batch, src_b_batch = src_batch
seg_a_batch, seg_b_batch = seg_batch
src_a_batch = src_a_batch.to(args.device)
src_b_batch = src_b_batch.to(args.device)
tgt_batch = tgt_batch.to(args.device)
seg_a_batch = seg_a_batch.to(args.device)
seg_b_batch = seg_b_batch.to(args.device)
loss, _ = model((src_a_batch, src_b_batch), tgt_batch, (seg_a_batch, seg_b_batch))
if torch.cuda.device_count() > 1:
loss = torch.mean(loss)
if args.fp16:
with args.amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
scheduler.step()
return loss
def evaluate(args, dataset):
src_a = torch.LongTensor([example[0][0] for example in dataset])
src_b = torch.LongTensor([example[0][1] for example in dataset])
tgt = torch.LongTensor([example[1] for example in dataset])
seg_a = torch.LongTensor([example[2][0] for example in dataset])
seg_b = torch.LongTensor([example[2][1] for example in dataset])
batch_size = args.batch_size
correct = 0
# Confusion matrix.
confusion = torch.zeros(args.labels_num, args.labels_num, dtype=torch.long)
args.model.eval()
for i, (src_batch, tgt_batch, seg_batch) in enumerate(batch_loader(batch_size, (src_a, src_b), tgt, (seg_a, seg_b))):
src_a_batch, src_b_batch = src_batch
seg_a_batch, seg_b_batch = seg_batch
src_a_batch = src_a_batch.to(args.device)
src_b_batch = src_b_batch.to(args.device)
tgt_batch = tgt_batch.to(args.device)
seg_a_batch = seg_a_batch.to(args.device)
seg_b_batch = seg_b_batch.to(args.device)
with torch.no_grad():
_, logits = args.model((src_a_batch, src_b_batch), None, (seg_a_batch, seg_b_batch))
pred = torch.argmax(nn.Softmax(dim=1)(logits), dim=1)
gold = tgt_batch
for j in range(pred.size()[0]):
confusion[pred[j], gold[j]] += 1
correct += torch.sum(pred == gold).item()
args.logger.debug("Confusion matrix:")
args.logger.debug(confusion)
args.logger.debug("Report precision, recall, and f1:")
eps = 1e-9
for i in range(confusion.size()[0]):
p = confusion[i, i].item() / (confusion[i, :].sum().item() + eps)
r = confusion[i, i].item() / (confusion[:, i].sum().item() + eps)
f1 = 2 * p * r / (p + r + eps)
args.logger.debug("Label {}: {:.3f}, {:.3f}, {:.3f}".format(i, p, r, f1))
args.logger.info("Acc. (Correct/Total): {:.4f} ({}/{}) ".format(correct / len(dataset), correct, len(dataset)))
return correct / len(dataset), confusion
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
finetune_opts(parser)
tokenizer_opts(parser)
args = parser.parse_args()
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
set_seed(args.seed)
# Count the number of labels.
args.labels_num = count_labels_num(args.train_path)
# Build tokenizer.
args.tokenizer = str2tokenizer[args.tokenizer](args)
# Build classification model.
model = SiameseClassifier(args)
# Load or initialize parameters.
load_or_initialize_parameters(args, model)
# Get logger.
args.logger = init_logger(args)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(args.device)
# Training phase.
trainset = read_dataset(args, args.train_path)
instances_num = len(trainset)
batch_size = args.batch_size
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1
args.logger.info("Batch size: {}".format(batch_size))
args.logger.info("The number of training instances: {}".format(instances_num))
optimizer, scheduler = build_optimizer(args, model)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
args.amp = amp
if torch.cuda.device_count() > 1:
args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
args.model = model
total_loss, result, best_result = 0.0, 0.0, 0.0
args.logger.info("Start training.")
for epoch in range(1, args.epochs_num + 1):
random.shuffle(trainset)
src_a = torch.LongTensor([example[0][0] for example in trainset])
src_b = torch.LongTensor([example[0][1] for example in trainset])
tgt = torch.LongTensor([example[1] for example in trainset])
seg_a = torch.LongTensor([example[2][0] for example in trainset])
seg_b = torch.LongTensor([example[2][1] for example in trainset])
model.train()
for i, (src_batch, tgt_batch, seg_batch) in enumerate(batch_loader(batch_size, (src_a, src_b), tgt, (seg_a, seg_b))):
loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch)
total_loss += loss.item()
if (i + 1) % args.report_steps == 0:
args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps))
total_loss = 0.0
result = evaluate(args, read_dataset(args, args.dev_path))
if result[0] > best_result:
best_result = result[0]
save_model(model, args.output_model_path)
# Evaluation phase.
if args.test_path is not None:
args.logger.info("Test set evaluation.")
if torch.cuda.device_count() > 1:
args.model.module.load_state_dict(torch.load(args.output_model_path))
else:
args.model.load_state_dict(torch.load(args.output_model_path))
evaluate(args, read_dataset(args, args.test_path))
if __name__ == "__main__":
main()